Python自然语言处理之词干,词形与最大匹配算法代码详解

本文主要对词干提取及词形还原以及最大匹配算法进行了介绍和代码示例,Python实现,下面我们一起看看具体内容。

自然语言处理中一个很重要的操作就是所谓的stemming和lemmatization,二者非常类似。它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别。

1、词干提取(stemming)

定义:Stemmingistheprocessforreducinginflected(orsometimesderived)wordstotheirstem,baseorrootform—generallyawrittenwordform.

解释一下,Stemming是抽取词的词干或词根形式(不一定能够表达完整语义)。

NLTK中提供了三种最常用的词干提取器接口,即Porterstemmer,LancasterStemmer和SnowballStemmer。

PorterStemmer基于Porter词干提取算法,来看例子

>>> from nltk.stem.porter import PorterStemmer
>>> porter_stemmer = PorterStemmer()
>>> porter_stemmer.stem(‘maximum')
u'maximum'
>>> porter_stemmer.stem(‘presumably')
u'presum'
>>> porter_stemmer.stem(‘multiply')
u'multipli'
>>> porter_stemmer.stem(‘provision')
u'provis'
>>> porter_stemmer.stem(‘owed')
u'owe' 

Lancaster Stemmer 基于Lancaster 词干提取算法,来看例子

>>> from nltk.stem.lancaster import LancasterStemmer
>>> lancaster_stemmer = LancasterStemmer()
>>> lancaster_stemmer.stem(‘maximum')
‘maxim'
>>> lancaster_stemmer.stem(‘presumably')
‘presum'
>>> lancaster_stemmer.stem(‘presumably')
‘presum'
>>> lancaster_stemmer.stem(‘multiply')
‘multiply'
>>> lancaster_stemmer.stem(‘provision')
u'provid'
>>> lancaster_stemmer.stem(‘owed')
‘ow' 

Snowball Stemmer基于Snowball 词干提取算法,来看例子

>>> from nltk.stem import SnowballStemmer
>>> snowball_stemmer = SnowballStemmer(“english”)
>>> snowball_stemmer.stem(‘maximum')
u'maximum'
>>> snowball_stemmer.stem(‘presumably')
u'presum'
>>> snowball_stemmer.stem(‘multiply')
u'multipli'
>>> snowball_stemmer.stem(‘provision')
u'provis'
>>> snowball_stemmer.stem(‘owed')
u'owe' 

2、词形还原(lemmatization)

定义:Lemmatisation(orlemmatization)inlinguistics,istheprocessofgroupingtogetherthedifferentinflectedformsofawordsotheycanbeanalysedasasingleitem.

可见,Lemmatisation是把一个任何形式的语言词汇还原为一般形式(能表达完整语义)。相对而言,词干提取是简单的轻量级的词形归并方式,最后获得的结果为词干,并不一定具有实际意义。词形还原处理相对复杂,获得结果为词的原形,能够承载一定意义,与词干提取相比,更具有研究和应用价值。

我们会在后面给出一个同MaxMatch算法相结合的更为复杂的例子。

这里介绍下词干提取和词形还原的联系与区别:

词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式(能表达完整语义),而词干提取

(stemming)是抽取词的词干或词根形式(不一定能够表达完整语义)。词形还原和词干提取是词形规范化的两类

重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别

现将共同点和联系总结为以下4方面:

(1)目标一致。词干提取和词形还原的目标均为将词的屈折形态或派生形态简化或归并为词干(stem)

或原形的基础形式,都是一种对词的不同形态的统一归并的过程。

(2)结果部分交叉。词干提取和词形还原不是互斥关系,其结果是有部分交叉的。一部分词利用这两类方法都能达到相同的词形转换效果。如“dogs”的词

干为“dog”,其原形也为“dog”。

(3)主流实现方法类似。目前实现词干提取和词形还原的主流实现方法均是利用语言中存在的规则或利用词典映射提取词干或获得词的原形。

(4)应用领域相似。主要应用于信息检索和文本、自然语言处理等方面,二者均是这些应用的基本步骤

二者的区别归纳为以下5方面:

(1)在原理上,词干提取主要是采用“缩减”的方法,将词转换为词干,如将“cats”处理为“cat”,将“effective”处理为“effect”。而词形还原主要采用“转变”

的方法,将词转变为其原形,如将“drove”处理为“drive”,将“driving”处理为“drive”。

(2)在复杂性上,词干提取方法相对简单,词形还原则需要返回词的原形,需要对词形进行分析,不仅要进行词缀的转化,还要进行词性识别,区分相同词形但

原形不同的词的差别。词性标注的准确率也直接影响词形还原的准确率,因此,词形还原更为复杂。

(3)在实现方法上,虽然词干提取和词形还原实现的主流方法类似,但二者在具体实现上各有侧重。词干提取的实现方法主要利用规则变化进行词缀的去除和缩减,从而达到词的简化效果。词形还原则相对较复杂,有复杂的形态变化,单纯依据规则无法很好地完成。其更依赖于词典,进行词形变化和原形的映射,生成词典中的有效词。

(4)在结果上,词干提取和词形还原也有部分区别。词干提取的结果可能并不是完整的、具有意义的词,而只是词的一部分,如“revival”词干提取的结果为“reviv”,“ailiner”词干提取的结果为“airlin”。而经词形还原处理后获得的结果是具有一定意义的、完整的词,一般为词典中的有效词。

(5)在应用领域上,同样各有侧重。虽然二者均被应用于信息检索和文本处理中,但侧重不同。词干提取更多被应用于信息检索领域,如Solr、Lucene等,用于扩展检索,粒度较粗。词形还原更主要被应用于文本挖掘、自然语言处理,用于更细粒度、更为准确的文本分析和表达

相对而言,词干提取是简单的轻量级的词形归并方式,最后获得的结果为词干,并不一定具有实际意义。词形还原处理相对复杂,获得结果为词的原形,能够承载一定意义,与词干提取相比,更具有研究和应用价值

3、最大匹配算法(MaxMatch)

MaxMatch算法在中文自然语言处理中常常用来进行分词(或许从名字上你已经能想到它是基于贪婪策略设计的一种算法)。通常,英语中一句话里的各个词汇之间通过空格来分割,这是非常straightforward的,但是中文却没有这个遍历。例如“我爱中华人民共和国”,这句话被分词的结果可能是这样的{‘我',‘爱',‘中华',‘人民',‘共和国'},又或者是{‘我',‘爱',‘中华人民共和国'},显然我们更倾向于后者的分词结果。因为‘中华人民共和国'显然是一个专有名词(把这样一个词分割来看显然并不明智)。我们选择后者的策略就是所谓的MaxMatch,即最大匹配。因为‘中华人民共和国'这个词显然要比‘中华',‘人民',‘共和国'这些词都长。

我们可以通过一个英文的例子来演示MaxMatch算法(其实中文处理的道理也是一样的)。算法从右侧开始逐渐减少字符串长度,以此求得可能匹配的最大长度的字符串。考虑到我们所获得的词汇可能包含有某种词型的变化,所以其中使用了Lemmatisation,然后在词库里进行匹配查找。

from nltk.stem import WordNetLemmatizer
from nltk.corpus import words 

wordlist = set(words.words())
wordnet_lemmatizer = WordNetLemmatizer() 

def max_match(text):
  pos2 = len(text)
  result = ''
  while len(text) > 0:
    word = wordnet_lemmatizer.lemmatize(text[0:pos2])
    if word in wordlist:
      result = result + text[0:pos2] + ' '
      text = text[pos2:]
      pos2 = len(text)
    else:
      pos2 = pos2-1
  return result[0:-1] 

来看看算法的实现效果

>>> string = 'theyarebirds'
>>> print(max_match(string))
they are birds 

当然,上述代码尚有一个不足,就是当字符串中存在非字母字符时(例如数字标点等),它可能会存在一些问题。有兴趣的读者不妨自己尝试完善改进这个版本的实现。

总结

以上就是本文关于Python自然语言处理之词干,词形与MaxMatch算法代码详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python编程使用NLTK进行自然语言处理详解

python爬虫系列Selenium定向爬取虎扑篮球图片详解

python绘制铅球的运行轨迹代码分享

如有不足之处,欢迎留言指出。

(0)

相关推荐

  • python中文分词教程之前向最大正向匹配算法详解

    前言 大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明. 最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • Python实现的破解字符串找茬游戏算法示例

    本文实例讲述了Python实现的破解字符串找茬游戏算法.分享给大家供大家参考,具体如下: 最近在一个QQ群里发现有那种机器人, 发出来字符串找茬游戏: 有点类似于: 没没没没没没没没没没没没没没没没没没 没没没没没没没没没没没没没没没没没没 没没没没没役没没没没没没没没没没没没 没没没没没没没没役没没没没没没没没没 没没没没没没没没没没没没没没没没没没 没没没没没没没没没没没没没没没没没没 玩法就是用户发消息到群里: #找茬 然后群里有个自动聊天的机器人, 他接到这句话之后, 会将上面一大堆文字

  • 遗传算法之Python实现代码

    写在前面 之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了.这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了. Python的遗传算法主函数 我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness.因此我们就可以通过直接建立对象来作为种群中的个体. #染色体的类 class Chrom: chrom = [] fitness = 0 def showCh

  • Python内存管理方式和垃圾回收算法解析

    概要 在列表,元组,实例,类,字典和函数中存在循环引用问题.有 __del__ 方法的实例会以健全的方式被处理.给新类型添加GC支持是很容易的.支持GC的Python与常规的Python是二进制兼容的. 分代式回收能运行工作(目前是三个分代).由 pybench 实测的结果是大约有百分之四的开销.实际上所有的扩展模块都应该依然如故地正常工作(我不得不修改了标准发行版中的 new 和 cPickle 模块).一个叫做 gc 的新模块马上就可以用来调试回收器和设置调试选项. 回收器应该是跨平台可移植

  • Python编程实现蚁群算法详解

    简介 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值. 定义 各个蚂蚁在没有事先告诉

  • Python计算斗牛游戏概率算法实例分析

    本文实例讲述了Python计算斗牛游戏概率算法.分享给大家供大家参考,具体如下: 过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛.在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率). 斗牛的玩法是: 1. 把牌中的JQK都拿出来 2. 每个人发5张牌 3. 如果5张牌中任意三张加在一起是10的 倍数,就是有牛.剩下两张牌的和的10的余数就是牛数. 牌的大小: 4条 > 3条 > 牛十 > 牛九 > -- >

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

  • Python自然语言处理之词干,词形与最大匹配算法代码详解

    本文主要对词干提取及词形还原以及最大匹配算法进行了介绍和代码示例,Python实现,下面我们一起看看具体内容. 自然语言处理中一个很重要的操作就是所谓的stemming和lemmatization,二者非常类似.它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别. 1.词干提取(stemming) 定义:Stemmingistheprocessforreducinginflected(orsometimesderived)wordstotheirstem,base

  • python获取时间及时间格式转换问题实例代码详解

    整理总结一下python中最常用的一些时间戳和时间格式的转换 第一部分:获取当前时间和10位13位时间戳 import datetime, time '''获取当前时间''' n = datetime.datetime.now() print(n) '''获取10位时间戳''' now = time.time() print(int(now)) '''获取13位时间戳''' now2 = round(now*1000) print(now2) 运行结果为: 2018-12-06 11:00:30

  • python多进程使用及线程池的使用方法代码详解

    多进程:主要运行multiprocessing模块 import os,time import sys from multiprocessing import Process class MyProcess(Process): """docstring for MyProcess""" def __init__(self, arg, callback): super(MyProcess, self).__init__() self.arg = a

  • python 获取当前目录下的文件目录和文件名实例代码详解

    os模块下有两个函数: os.walk() os.listdir() # -*- coding: utf-8 -*- import os def file_name(file_dir): for root, dirs, files in os.walk(file_dir): print(root) #当前目录路径 print(dirs) #当前路径下所有子目录 print(files) #当前路径下所有非目录子文件 输出格式为: 当前文件目录路径 当前路径下子文件目录(若存在, 不存在则为 []

  • Python实现多态、协议和鸭子类型的代码详解

    多态 问起面向对象的三大特性,几乎每个人都能对答如流:封装.继承.多态.今天我们就要来说一说 Python 中的多态. 所谓多态:就是指一个类实例的相同方法在不同情形有不同表现形式.多态机制使具有不同内部结构的对象可以共享相同的外部接口.这意味着,虽然针对不同对象的具体操作不同,但通过一个公共的类,它们(那些操作)可以通过相同的方式予以调用. 我在<Python 中的设计模式详解之:策略模式>一文中详细描述了策略模式的实现,而策略模式就是典型的多态应用. 之前的代码我就不贴了,大家可以去原文中

  • python实现秒杀商品的微信自动提醒功能(代码详解)

    技术实现原理:获取京东的具体的商品信息,然后再使用微信发送提醒 工具:需要两个微信号,这两个微信号互为好友 1.收集自己想要的商品url 我们就以京东来举例,获取京东的秒杀商品信息: 首先,我们在网页上打开京东,搜索我们想要的商品,这边我就以我最近买的东西为例子: 我们需要找到它的商品信息,需要打开浏览器的开发者模式,之后我们需要选择自己的配送地址,这个时候里面就发送一些接口请求: 我们选择一个有用的商品信息接口: 找到自己想要商品的信息接口,来判断它是否有货: 一般规则是:如果这个接口书籍里面

  • Python实现电视里的5毛特效实例代码详解

    前段时间接触了一个批量抠图的模型库,而后在一些视频中找到灵感,觉得应该可以通过抠图的方式,给视频换一个不同的场景,于是就有了今天的文章. 我们先看看能实现什么效果,先来个正常版的,先看看原场景: 下面是我们切换场景后的样子: 看起来效果还是不错的,有了这个我们就可以随意切换场景,坟头蹦迪不是梦.另外,我们再来看看另外一种效果,相比之下要狂放许多: 实现步骤 我们都知道,视频是由一帧一帧的画面组成的,每一帧都是一张图片,我们要实现对视频的修改就需要对视频中每一帧画面进行修改.所以在最开始,我们需要

  • Python统计可散列的对象之容器Counter详解

    一.初始化Counter Counter支持3种形式的初始化,比如提供一个数组,一个字典,或单独键值对"="式赋值.具体初始化的代码如下所示: import collections a = collections.Counter(['a', 'a', 'b', 'b', 'b', 'c']) b = collections.Counter({"a": 2, "b": 3, "c": 1}) c = collections.Co

  • Python探索之ModelForm代码详解

    这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来,对,你没猜错,相信自己的英语水平. 先来一个简单的例子来看一下这个东西怎么用: 比如我们的数据库中有这样一张学生表,字段有姓名,年龄,爱好,邮箱,电话,住址,注册时间等等一大堆信息,现在让你写一个创建学生的页面,你的后台应该怎么写呢? 首先我们会在前端一个一个罗列出这些字段,让用户去填写,然后我们从后天一个一个接收用户的输入,创建一个新的学生对象,保存 其实,重点不是这些,而是合法性验证,我们需要在前端

  • python类:class创建、数据方法属性及访问控制详解

    在Python中,可以通过class关键字定义自己的类,然后通过自定义的类对象类创建实例对象. python中创建类 创建一个Student的类,并且实现了这个类的初始化函数"__init__": class Student(object):     count = 0     books = []     def __init__(self, name):         self.name = name 接下来就通过上面的Student类来看看Python中类的相关内容. 类构造和

随机推荐