MongoDB中MapReduce的使用方法详解

前言

玩过Hadoop的小伙伴对MapReduce应该不陌生,MapReduce的强大且灵活,它可以将一个大问题拆分为多个小问题,将各个小问题发送到不同的机器上去处理,所有的机器都完成计算后,再将计算结果合并为一个完整的解决方案,这就是所谓的分布式计算。本文我们就来看看MongoDB中MapReduce的使用。

打算用mongodb mapreduce之前一定要知道的事!!!

mapreduce其实是分批处理数据的,每一百次重新reduce处理,所以到reduce里的数据如果是101条,那就会分2次进入。

这导致的问题就是在reduce中 如果 初始化 var count = 0;在循环中 count ++,最后输出的是1???

避免都方法是,把数据存在返回的value里,这个value是会在循环进入reduce的时候重用的。在循环中 count += value.count就能把之前都100加上了!!!

还有如果只有一条数据,那它不会进入reduce,会直接返回。

下面是具体例子:

string map = @"
function() {
var view = this;
emit(view.activity, {pv: 1});
}";
string reduce = @"
function(key, values) {
var result = {pv: 0};
values.forEach(function(value){
result.pv += value.pv;
});
return result;
}";
string finalize = @"
function(key, value){
return value;
}";

mapReduce

MongoDB中的MapReduce可以用来实现更复杂的聚合命令,使用MapReduce主要实现两个函数:map函数和reduce函数,map函数用来生成键值对序列,map函数的结果作为reduce函数的参数,reduce函数中再做进一步的统计,比如我的数据集如下:

{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}

假如我想查询每位作者所出的书的总价,操作如下:

var map=function(){emit(this.name,this.price)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"totalPrice"}
db.sang_books.mapReduce(map,reduce,options);
db.totalPrice.find()

emit函数主要用来实现分组,接收两个参数,第一个参数表示分组的字段,第二个参数表示要统计的数据,reduce来做具体的数据处理操作,接收两个参数,对应emit方法的两个参数,这里使用了Array中的sum函数对price字段进行自加处理,options中定义了将结果输出的集合,届时我们将在这个集合中去查询数据,默认情况下,这个集合即使在数据库重启后也会保留,并且保留集合中的数据。

查询结果如下:

{
 "_id" : "曹雪芹",
 "value" : 22.0
}
{
 "_id" : "钱钟书",
 "value" : 165.0
}
{
 "_id" : "鲁迅",
 "value" : 93.0
}

再比如我想查询每位作者出了几本书,如下:

var map=function(){emit(this.name,1)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"bookNum"}
db.sang_books.mapReduce(map,reduce,options);
db.bookNum.find()

查询结果如下:

{
 "_id" : "曹雪芹",
 "value" : 1.0
}
{
 "_id" : "钱钟书",
 "value" : 2.0
}
{
 "_id" : "鲁迅",
 "value" : 2.0
}

将每位作者的书列出来,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()

结果如下:

{
 "_id" : "曹雪芹",
 "value" : "红楼梦"
}
{
 "_id" : "钱钟书",
 "value" : "宋诗选注,谈艺录"
}
{
 "_id" : "鲁迅",
 "value" : "呐喊,彷徨"
}

比如查询每个人售价在¥40以上的书:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={query:{price:{$gt:40}},out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()

query表示对查到的集合再进行筛选。

结果如下:

{
 "_id" : "钱钟书",
 "value" : "宋诗选注,谈艺录"
}
{
 "_id" : "鲁迅",
 "value" : "彷徨"
}

runCommand实现

我们也可以利用runCommand命令来执行MapReduce。格式如下:

db.runCommand(
    {
     mapReduce: <collection>,
     map: <function>,
     reduce: <function>,
     finalize: <function>,
     out: <output>,
     query: <document>,
     sort: <document>,
     limit: <number>,
     scope: <document>,
     jsMode: <boolean>,
     verbose: <boolean>,
     bypassDocumentValidation: <boolean>,
     collation: <document>
    }
    )

含义如下:

参数 含义
mapReduce 表示要操作的集合
map map函数
reduce reduce函数
finalize 最终处理函数
out 输出的集合
query 对结果进行过滤
sort 对结果排序
limit 返回的结果数
scope 设置参数值,在这里设置的值在map、reduce、finalize函数中可见
jsMode 是否将map执行的中间数据由javascript对象转换成BSON对象,默认为false
verbose 是否显示详细的时间统计信息
bypassDocumentValidation 是否绕过文档验证
collation 其他一些校对

如下操作,表示执行MapReduce操作并对统计的集合限制返回条数,限制返回条数之后再进行统计操作,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true})
db.books.find()

执行结果如下:

{
 "_id" : "曹雪芹",
 "value" : "红楼梦"
}
{
 "_id" : "钱钟书",
 "value" : "宋诗选注,谈艺录"
}
{
 "_id" : "鲁迅",
 "value" : "呐喊"
}

小伙伴们看到,鲁迅有一本书不见了,就是因为limit是先限制集合返回条数,然后再执行统计操作。

finalize操作表示最终处理函数,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1})
db.books.find()

f1第一个参数key表示emit中的第一个参数,第二个参数表示reduce的执行结果,我们可以在f1中对这个结果进行再处理,结果如下:

{
 "_id" : "曹雪芹",
 "value" : {
  "author" : "曹雪芹",
  "books" : "红楼梦"
 }
}
{
 "_id" : "钱钟书",
 "value" : {
  "author" : "钱钟书",
  "books" : "宋诗选注,谈艺录"
 }
}
{
 "_id" : "鲁迅",
 "value" : {
  "author" : "鲁迅",
  "books" : "呐喊,彷徨"
 }
}

scope则可以用来定义一个在map、reduce和finalize中都可见的变量,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',--'+sang+'--,')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}})
db.books.find()

执行结果如下:

{
 "_id" : "曹雪芹",
 "value" : {
  "author" : "曹雪芹",
  "books" : "红楼梦",
  "sang" : "haha"
 }
}
{
 "_id" : "钱钟书",
 "value" : {
  "author" : "钱钟书",
  "books" : "宋诗选注,--haha--,谈艺录",
  "sang" : "haha"
 }
}
{
 "_id" : "鲁迅",
 "value" : {
  "author" : "鲁迅",
  "books" : "呐喊,--haha--,彷徨",
  "sang" : "haha"
 }
}

好了,MongoDB中的MapReduce我们就先说到这里,小伙伴们有问题欢迎留言讨论。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

参考资料:

1.《MongoDB权威指南第2版》

2.mongodb mapreduce小试

3.mongoDB--mapreduce用法详解(未找到原始出处)

(0)

相关推荐

  • js数组方法reduce经典用法代码分享

    以下是个人在工作中收藏总结的一些关于javascript数组方法reduce的相关代码片段,后续遇到其他使用这个函数的场景,将会陆续添加,这里作为备忘. javascript数组那么多方法,为什么我要单挑reduce方法,一个原因是我对这个方法掌握不够,不能够用到随心所欲.另一个方面,我也感觉到了这个方法的庞大魅力,在许多的场景中发挥着神奇的作用. 理解reduce函数 reduce() 方法接收一个函数作为累加器(accumulator),数组中的每个值(从左到右)开始缩减,最终为一个值. a

  • 对tf.reduce_sum tensorflow维度上的操作详解

    tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明.官方给的api reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) input_tensor:表示输入 axis:表示在那个维度进行sum操作. keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度. reduction_indices:

  • Java/Web调用Hadoop进行MapReduce示例代码

    Hadoop环境搭建详见此文章http://www.jb51.net/article/33649.htm. 我们已经知道Hadoop能够通过Hadoop jar ***.jar input output的形式通过命令行来调用,那么如何将其封装成一个服务,让Java/Web来调用它?使得用户可以用方便的方式上传文件到Hadoop并进行处理,获得结果.首先,***.jar是一个Hadoop任务类的封装,我们可以在没有jar的情况下运行该类的main方法,将必要的参数传递给它.input 和outpu

  • MapReduce核心思想图文详解

    MapReduce核心编程思想,如图1-1所示. 图1-1 MapReduce核心编程思想 1)分布式的运算程序往往需要分成至少2个阶段. 2)第一个阶段的MapTask并发实例,完全并行运行,互不相干. 3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出. 4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行. 小结:分析WordC

  • 通用MapReduce程序复制HBase表数据

    编写MR程序,让其可以适合大部分的HBase表数据导入到HBase表数据.其中包括可以设置版本数.可以设置输入表的列导入设置(选取其中某几列).可以设置输出表的列导出设置(选取其中某几列). 原始表test1数据如下: 每个row key都有两个版本的数据,这里只显示了row key为1的数据 在hbase shell 中创建数据表: create 'test2',{NAME => 'cf1',VERSIONS => 10} // 保存无版本.无列导入设置.无列导出设置的数据 create '

  • js中的reduce()函数讲解

    定义: reduce() 方法接收一个函数作为累加器,数组中的每个值(从左到右)开始缩减,最终计算为一个值.对空数组是不会执行回调函数的. 案例 1.数组求和 // 1.数组求和 var arr = [1,5,8,6,15,78,65,25,48,55] var sum = arr.reduce(function(total,currentValue){ return total+currentValue; }); console.log(sum);//306 var eachSum = 0;

  • Javascript面试经典套路reduce函数查重

    今天在偶然间查看到了一段代码,代码使用了很短的篇幅完成了字符串统计相同字符次数这个经典面试题,其中用到了reduce这个方法,网上查了查,没有查到什么有价值的东西,导致浪费了我一些时间才看懂,现将我的思路整理如下: 原代码: var arr="qweqrq" var info= arr.split('').reduce((a,b)=> (a[b]++ || (a[b]=1),a) ,{}) console.log(info) 代码思路是这样的,先将字符串arr通过split方法切

  • shuffle的关键阶段sort(Map端和Reduce端)源码分析

    源码中有这样一段代码 1. Map端排序获取的比较器 public RawComparator getOutputKeyComparator() { // 获取mapreduce.job.output.key.comparator.class,必须是RawComparator类型,如果没设置,是null Class<? extends RawComparator> theClass = getClass( JobContext.KEY_COMPARATOR, null, RawComparat

  • Array数组对象中的forEach、map、filter及reduce详析

    前言 刚才某人问了我一个问题.map怎么遍历,我刷刷刷就是一顿写.遍历么,forEach么,妥妥的. var map = new Map(); map.set('item1', 'value1') map.set('item2', 'value2') map.forEach(function(value, key, map) { console.log("Key: %s, Value: %s", key, value); }); 好吧,我写完了之后,他发给我了一句话. [].forEa

  • 详解JS数组Reduce()方法详解及高级技巧

    基本概念 reduce() 方法接收一个函数作为累加器(accumulator),数组中的每个值(从左到右)开始缩减,最终为一个值. reduce 为数组中的每一个元素依次执行回调函数,不包括数组中被删除或从未被赋值的元素,接受四个参数:初始值(或者上一次回调函数的返回值),当前元素值,当前索引,调用 reduce 的数组. 语法: arr.reduce(callback,[initialValue]) callback (执行数组中每个值的函数,包含四个参数) previousValue (上

随机推荐