基于python解线性矩阵方程(numpy中的matrix类)
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题。在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程。查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西。先把代码给出。
import numpy as np # A = np.mat('1 2 3;2 -1 1;3 0 -1') A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8, 3]) x = np.linalg.solve(A, b) print(x)
是不是很简洁?因为调用了强大的包numpy~ 我们想解决的问题是求解矩阵方程Ax=bAx=b。在这里调用numpy中的线性代数包np.linalg,使用其中的function->solve(A, b)。几行代码就解决了问题。在这里solve函数有两个输入,第一个输入是矩阵,可以采用numpy里的矩阵数据类型或者最常用的数组数据类型。第二个输入是右端项b,一个一维numpy数组即可。函数返回方程的解,shape和b是相同的。如果矩阵A是奇异的或者不是方阵,函数就会报错。
好了,问题得到了绝佳的解决,大不了把python当计算器来用呗~
下面是补充知识:numpy中的matrix类
matrix类是numpy中的一个过时的类,可能会在未来被移除。因为现在大多数人都会用更加灵活好用的ndarray,移除它也是可以理解的。
>>> a = np.matrix('1 2; 3 4') >>> a matrix([[1, 2], [3, 4]]) >>> np.matrix([[1, 2], [3, 4]]) matrix([[1, 2], [3, 4]])
matrix有两种构造方式,从第二种我们看到和一般的数组类型一模一样,在这里我们就能窥到matrix其实就是继承了ndarray,基于ndarray。拿matrix进行线性代数运算是因为它有很多方便的函数。
matrix.T transpose:返回矩阵的转置矩阵 matrix.H hermitian (conjugate) transpose:返回复数矩阵的共轭元素矩阵 matrix.I inverse:返回矩阵a逆矩阵 matrix.A base array:返回矩阵基于的数组<br data-filtered="filtered">matrix.AI flattened ndarray: 返回展平的数组
其他的很多类方法不再介绍,以上四个是最基本的类似语法糖的函数。
需要注意的是,ndarray类型同样能方便地进行转置和求逆。
A = np.array([[1, 2], [3, 4]]) print(A.T) A_I = np.linalg.inv(A)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python用fsolve、leastsq对非线性方程组求解
背景: 实现用python的optimize库的fsolve对非线性方程组进行求解.可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合函数的leastsq求解.下面用这两个方法进行对比: 代码: from scipy.optimize import fsolve,leastsq from math import sin,cos def f(x): x0 = float(x[0]) x1 = float(x[1]) x2 = float(x[2]) return [ 5*x1+3, 4*x
-
python/sympy求解矩阵方程的方法
sympy版本:1.2 假设求解矩阵方程 AX=A+2X 其中 求解之前对矩阵方程化简为 (A−2E)X=A 令 B=(A−2E) 使用qtconsole输入下面程序进行求解 In [26]: from sympy import * In [27]: from sympy.abc import * In [28]: A=Matrix([[4,2,3],[1,1,0],[-1,2,3]]) In [29]: A Out[29]: Matrix([ [ 4, 2, 3], [ 1, 1, 0], [
-
Python编程实现数学运算求一元二次方程的实根算法示例
本文实例讲述了Python编程实现数学运算求一元二次方程的实根算法.分享给大家供大家参考,具体如下: 问题: 请定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程:ax² + bx + c = 0的两个解. 实现代码: #!/usr/bin/env python # -*- coding: utf-8 -*- import math def quadratic(a,b,c): if a == 0: raise TypeError('a不能为0') if not is
-
Python线性方程组求解运算示例
本文实例讲述了Python线性方程组求解运算.分享给大家供大家参考,具体如下: 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - 2x_3 = 5 x_1 - x_2 + 4x_3 = -2 2x_1 + 3x_3 = 2.5 代码如下: # coding=utf-8 import numpy as np from scipy.linalg import solve a =
-
Python基于高斯消元法计算线性方程组示例
本文实例讲述了Python基于高斯消元法计算线性方程组.分享给大家供大家参考,具体如下: #!/usr/bin/env python # coding=utf-8 # 以上的信息随自己的需要改动吧 def print_matrix( info, m ): # 输出矩阵 i = 0; j = 0; l = len(m) print info for i in range( 0, len( m ) ): for j in range( 0, len( m[i] ) ): if( j == l ):
-
python计算方程式根的方法
本文实例讲述了python计算方程式根的方法.分享给大家供大家参考.具体实现方法如下: ''' roots = polyRoots(a). Uses Laguerre's method to compute all the roots of a[0] + a[1]*x + a[2]*x^2 +...+ a[n]*x^n = 0. The roots are returned in the array 'roots', ''' from evalPoly import * from numpy i
-
python scipy求解非线性方程的方法(fsolve/root)
使用scipy.optimize模块的root和fsolve函数进行数值求解线性及非线性方程,下面直接贴上代码,代码很简单 from scipy.integrate import odeint import numpy as np import matplotlib.pyplot as plt from scipy.optimize import root,fsolve #plt.rc('text', usetex=True) #使用latex ## 使用scipy.optimize模块的roo
-
Python实现求解一元二次方程的方法示例
本文实例讲述了Python实现求解一元二次方程的方法.分享给大家供大家参考,具体如下: 1. 引入math包 2. 定义返回的对象 3. 判断b*b-4ac的大小 具体计算代码如下: # -*- coding:utf-8 -*- #! python2 import math class Result: result1 = 0 result2 = 0 def __init__(self, r1, r2): self.result1 = r1 self.result2 = r2 def __retu
-
基于python解线性矩阵方程(numpy中的matrix类)
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题.在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程.查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西.先把代码给出. import numpy as np # A = np.mat('1 2 3;2 -1 1;3 0 -1') A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8,
-
详解Python如何循环遍历Numpy中的Array
目录 1. 引言 2. 使用For循环遍历 3. 函数 nditer() 4. 函数 ndenumerate() 5. 结论 1. 引言 Numpy是Python中常见的数据处理库.Numpy是 Numerical Python的缩写,它是数据科学中经常使用的库.Numpy专门用于处理矩阵运算,因为它包含各式各样的处理函数.在本文中,我们主要用于学习如何迭代遍历访问矩阵中的元素. 闲话少说,我们直接开始吧! 2. 使用For循环遍历 首先我们来看个例子,使用循环来遍历数组,样例代码如下: imp
-
Numpy中矩阵matrix读取一列的方法及数组和矩阵的相互转换实例
Numpy matrix 必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND),matrix是Array的一个小的分支,包含于Array. import numpy as np >>> m = np.mat([[1,2],[3,4]]) >>> m[0] #读取一行 matrix([[1, 2]]) >>> m[:,0] #读取一列 matrix([[1], [3]]) numpy中数组和矩阵
-
基于Python正则表达式提取搜索结果中的站点地址
正则表达式对于Python来说并不是独有的,最近在把google搜索的结果中所有的站点地址导出,于是想到用python正则表达式提取搜索结果中的站点地址. 这其中涉及几个需要解决的问题: 1.获取搜索的结果文本 为了获得更多的地址,我使用了Google的高级搜索功能,每个页面显示100条结果. 获得显示的结果后,可以查看源码,并保持成文本文件就有了搜索的结果文本 2.分析如何提取站点信息 首先需要分析获取的页面,查看以怎样的方式可以提取出站点信息. 我使用IE8自带的开发工具(按F12就会弹出来
-
详解NumPy中的线性关系与数据修剪压缩
目录 摘要 一.用线性模型预测价格 二.趋势线 三.数组的修剪和压缩 四.阶乘 摘要 总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如 和 都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个股价等于之前的股价与各自的系数相乘后再做加和的结果,但是,这些系数是
-
Python实现从log日志中提取ip的方法【正则提取】
本文实例讲述了Python实现从log日志中提取ip的方法.分享给大家供大家参考,具体如下: log日志内容如下(myjob.log): 124.90.53.68 - - [05/Feb/2018 11:37:07] "GET /favicon.ico HTTP/1.1" 404 - 61.148.245.145 - - [05/Feb/2018 12:37:44] "GET / HTTP/1.1" 200 - 61.148.245.145 - - [05/Feb/
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
-
基于python及pytorch中乘法的使用详解
numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim
-
基于python中的TCP及UDP(详解)
python中是通过套接字即socket来实现UDP及TCP通信的.有两种套接字面向连接的及无连接的,也就是TCP套接字及UDP套接字. TCP通信模型 创建TCP服务器 伪代码: ss = socket() # 创建服务器套接字 ss.bind() # 套接字与地址绑定 ss.listen() # 监听连接 inf_loop: # 服务器无限循环 cs = ss.accept() # 接受客户端连接 comm_loop: # 通信循环 cs.recv()/cs.send() # 对话(接收/发
-
基于python中staticmethod和classmethod的区别(详解)
例子 class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x): print "executing static_foo(%s)"%x a=A(
随机推荐
- Dojo 学习要点
- ASP类型网站结合动网论坛会员的方法第1/3页
- 求婚示爱的Perl代码之注释篇
- 基于jquery的浮动层效果代码
- vue2.0实战之使用vue-cli搭建项目(2)
- 简单的java读取文件示例分享
- group by,having,order by的用法详解
- 在Linux上安装Python的Flask框架和创建第一个app实例的教程
- ASP.NET 获取客户端IP方法
- VS2015 免费插件Refactoring Essentials
- MySQL中字符串索引对update的影响分析
- Python-基础-入门 简介
- 使用python实现个性化词云的方法
- jquery通过ajax加载一段文本内容的方法
- JavaScript 时分秒时间代码(自动补零)
- IIS支持WAP及ASP生成WML的设置方法
- java_String和StringBuffer区别分析
- Android侧滑导航栏的实例代码
- android之计时器(Chronometer)的使用以及常用的方法
- jQuery中inArray方法注意事项分析