C++实现LeetCode(169.求大多数)

[LeetCode] 169. Majority Element 求大多数

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array.

Example 1:

Input: nums = [3,2,3]
Output: 3

Example 2:

Input: nums = [2,2,1,1,1,2,2]
Output: 2

Constraints:

  • n == nums.length
  • 1 <= n <= 5 * 104
  • -231 <= nums[i] <= 231 - 1

Follow-up: Could you solve the problem in linear time and in O(1) space?

这是到求大多数的问题,有很多种解法,其中我感觉比较好的有两种,一种是用哈希表,这种方法需要 O(n) 的时间和空间,另一种是用一种叫摩尔投票法 Moore Voting,需要 O(n) 的时间和 O(1) 的空间,比前一种方法更好。这种投票法先将第一个数字假设为过半数,然后把计数器设为1,比较下一个数和此数是否相等,若相等则计数器加一,反之减一。然后看此时计数器的值,若为零,则将下一个值设为候选过半数。以此类推直到遍历完整个数组,当前候选过半数即为该数组的过半数。不仔细弄懂摩尔投票法的精髓的话,过一阵子还是会忘记的,首先要明确的是这个叼炸天的方法是有前提的,就是数组中一定要有过半数的存在才能使用,下面来看本算法的思路,这是一种先假设候选者,然后再进行验证的算法。现将数组中的第一个数假设为过半数,然后进行统计其出现的次数,如果遇到同样的数,则计数器自增1,否则计数器自减1,如果计数器减到了0,则更换下一个数字为候选者。这是一个很巧妙的设定,也是本算法的精髓所在,为啥遇到不同的要计数器减1呢,为啥减到0了又要更换候选者呢?首先是有那个强大的前提存在,一定会有一个出现超过半数的数字存在,那么如果计数器减到0了话,说明目前不是候选者数字的个数已经跟候选者的出现个数相同了,那么这个候选者已经很 weak,不一定能出现超过半数,此时选择更换当前的候选者。那有可能你会有疑问,那万一后面又大量的出现了之前的候选者怎么办,不需要担心,如果之前的候选者在后面大量出现的话,其又会重新变为候选者,直到最终验证成为正确的过半数,佩服算法的提出者啊,代码如下:

C++ 解法一:

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int res = 0, cnt = 0;
        for (int num : nums) {
            if (cnt == 0) {res = num; ++cnt;}
            else (num == res) ? ++cnt : --cnt;
        }
        return res;
    }
};

Java 解法一:

public class Solution {
    public int majorityElement(int[] nums) {
        int res = 0, cnt = 0;
        for (int num : nums) {
            if (cnt == 0) {res = num; ++cnt;}
            else if (num == res) ++cnt;
            else --cnt;
        }
        return res;
    }
}

下面这种解法利用到了位操作 Bit Manipulation 来解,将这个大多数按位来建立,从0到31位,每次统计下数组中该位上0和1的个数,如果1多,那么将结果 res 中该位变为1,最后累加出来的 res 就是过半数了,相当赞的方法,参见代码如下:

C++ 解法二:

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int res = 0, n = nums.size();
        for (int i = 0; i < 32; ++i) {
            int ones = 0, zeros = 0;
            for (int num : nums) {
                if (ones > n / 2 || zeros > n / 2) break;
                if ((num & (1 << i)) != 0) ++ones;
                else ++zeros;
            }
            if (ones > zeros) res |= (1 << i);
        }
        return res;
    }
};

Java 解法二:

public class Solution {
    public int majorityElement(int[] nums) {
        int res = 0, n = nums.length;
        for (int i = 0; i < 32; ++i) {
            int ones = 0, zeros = 0;
            for (int num : nums) {
                if (ones > n / 2 || zeros > n / 2) break;
                if ((num & (1 << i)) != 0) ++ones;
                else ++zeros;
            }
            if (ones > zeros) res |= (1 << i);
        }
        return res;
    }
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/169

类似题目:

Majority Element II

参考资料:

https://leetcode.com/problems/majority-element/

https://leetcode.com/problems/majority-element/discuss/51613/O(n)-time-O(1)-space-fastest-solution

https://leetcode.com/problems/majority-element/discuss/51612/6-Suggested-Solutions-in-C++-with-Explanations

https://leetcode.com/problems/majority-element/discuss/51611/Java-solutions-(sorting-hashmap-moore-voting-bit-manipulation).

https://leetcode.com/problems/majority-element/discuss/51828/C++-solution-using-Moore's-voting-algorithm-O(n)-runtime-comlexity-an-no-extra-array-or-hash-table

到此这篇关于C++实现LeetCode(169.求大多数)的文章就介绍到这了,更多相关C++实现求大多数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(164.求最大间距)

    [LeetCode] 164. Maximum Gap 求最大间距 Given an unsorted array, find the maximum difference between the successive elements in its sorted form. Return 0 if the array contains less than 2 elements. Example 1: Input: [3,6,9,1] Output: 3 Explanation: The sor

  • C++实现LeetCode(228.总结区间)

    [LeetCode] 228.Summary Ranges 总结区间 Given a sorted integer array without duplicates, return the summary of its ranges. Example 1: Input:  [0,1,2,4,5,7] Output: ["0->2","4->5","7"] Explanation: 0,1,2 form a continuous ran

  • C++实现LeetCode165.版本比较)

    [LeetCode] 165.Compare Version Numbers 版本比较 Compare two version numbers version1 and version2. If version1 > version2 return 1; if version1 <version2 return -1;otherwise return 0. You may assume that the version strings are non-empty and contain onl

  • C++实现LeetCode(166.分数转循环小数)

    [LeetCode] 166.Fraction to Recurring Decimal 分数转循环小数 Given two integers representing the numerator and denominator of a fraction, return the fraction in string format. If the fractional part is repeating, enclose the repeating part in parentheses. Fo

  • C++实现LeetCode(167.两数之和之二 - 输入数组有序)

    [LeetCode] 167.Two Sum II - Input array is sorted 两数之和之二 - 输入数组有序 Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of t

  • C++实现LeetCode(168.求Excel表列名称)

    [LeetCode] 168.Excel Sheet Column Title 求Excel表列名称 Given a positive integer, return its corresponding column title as appear in an Excel sheet. For example:     1 -> A 2 -> B 3 -> C ... 26 -> Z 27 -> AA 28 -> AB ... Example 1: Input: 1 O

  • C++实现LeetCode(171.求Excel表列序号)

    [LeetCode] 171.Excel Sheet Column Number 求Excel表列序号 Related to question Excel Sheet Column Title Given a column title as appear in an Excel sheet, return its corresponding column number. For example:     A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -&g

  • C++实现LeetCode(163.缺失区间)

    [LeetCode] 163. Missing Ranges 缺失区间 Given a sorted integer array nums, where the range of elements are in the inclusive range [lower, upper], return its missing ranges. Example: Input: nums = [0, 1, 3, 50, 75], lower = 0 and upper = 99, Output: ["2&q

  • C++实现LeetCode(169.求大多数)

    [LeetCode] 169. Majority Element 求大多数 Given an array nums of size n, return the majority element. The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array. Example 1

  • C++实现LeetCode(50.求x的n次方)

    [LeetCode] 50. Pow(x, n) 求x的n次方 Implement pow(x, n), which calculates x raised to the power n(xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation

  • C++实现LeetCode(58.求末尾单词的长度)

    [LeetCode] 58. Length of Last Word 求末尾单词的长度 Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string. If the last word does not exist, return 0. Note: A word is defined as a

  • C++实现LeetCode( 69.求平方根)

    [LeetCode] 69. Sqrt(x) 求平方根 Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a non-negative integer. Since the return type is an integer, the decimal digits are truncated and only the integer part of the

  • C++实现LeetCode(187.求重复的DNA序列)

    [LeetCode] 187. Repeated DNA Sequences 求重复的DNA序列 All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Wr

  • C++实现LeetCode(124.求二叉树的最大路径和)

    [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和 Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child conn

  • C++实现LeetCode(129.求根到叶节点数字之和)

    [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和 Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum

  • C++实现LeetCode(128.求最长连续序列)

    [LeetCode] 128.Longest Consecutive Sequence 求最长连续序列 Given an unsorted array of integers, find the length of the longest consecutive elements sequence. Your algorithm should run in O(n) complexity. Example: Input: [100, 4, 200, 1, 3, 2] Output: 4 Expl

  • C++实现LeetCode(152.求最大子数组乘积)

    [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积 Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has

  • C++实现LeetCode(160.求两个链表的交点)

    [LeetCode] 160.Intersection of Two Linked Lists 求两个链表的交点 Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: A:          a1 → a2 c1 → c2 → c3             B:     b1

随机推荐