Pandas-DataFrame知识点汇总

目录
  • 1、DataFrame的创建
    • 根据字典创建
    • 读取文件
  • 2、DataFrame轴的概念
  • 3、DataFrame一些性质
    • 索引、切片
    • 修改数据
    • 重新索引
    • 丢弃指定轴上的值
    • 算术运算
    • 函数应用和映射
    • 排序和排名
    • 汇总和计算描述统计
    • 处理缺失数据

1、DataFrame的创建

DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。
DataFrame的创建有多种方式,不过最重要的还是根据dict进行创建,以及读取csv或者txt文件来创建。这里主要介绍这两种方式。

根据字典创建

data = {
    'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
    'year':[2000,2001,2002,2001,2002],
    'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame = pd.DataFrame(data)
frame

#输出
    pop state   year
0   1.5 Ohio    2000
1   1.7 Ohio    2001
2   3.6 Ohio    2002
3   2.4 Nevada  2001
4   2.9 Nevada  2002

DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:

frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2

#输出
    year    state   pop debt
one 2000    Ohio    1.5 NaN
two 2001    Ohio    1.7 NaN
three   2002    Ohio    3.6 NaN
four    2001    Nevada  2.4 NaN
five    2002    Nevada  2.9 NaN

使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:

pop = {'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame3 = pd.DataFrame(pop)
frame3
#输出
    Nevada  Ohio
2000    NaN 1.5
2001    2.4 1.7
2002    2.9 3.6

我们可以用indexcolumnsvalues来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray

frame2.values
#输出
array([[2000, 'Ohio', 1.5, 0],
       [2001, 'Ohio', 1.7, 1],
       [2002, 'Ohio', 3.6, 2],
       [2001, 'Nevada', 2.4, 3],
       [2002, 'Nevada', 2.9, 4]], dtype=object)

读取文件

读取文件生成DataFrame最常用的是read_csv,read_table方法。

该方法中几个重要的参数如下所示:

参数 描述
header 默认第一行为columns,如果指定header=None,则表明没有索引行,第一行就是数据
index_col 默认作为索引的为第一列,可以设为index_col为-1,表明没有索引列
nrows 表明读取的行数
sep或delimiter 分隔符,read_csv默认是逗号,而read_table默认是制表符\t
encoding 编码格式

其他创建DataFrame的方式有很多,比如我们可以通过读取mysql或者mongoDB来生成,也可以读取json文件等等,这里就不再介绍。

2、DataFrame轴的概念

DataFrame的处理中经常会遇到轴的概念,这里先给大家一个直观的印象,我们所说的axis=0即表示沿着每一列或行标签\索引值向下执行方法,axis=1即表示沿着每一行或者列标签模向执行对应的方法。

3、DataFrame一些性质

索引、切片

我们可以根据列名来选取一列,返回一个Series:

frame2['year']
#输出
one      2000
two      2001
three    2002
four     2001
five     2002
Name: year, dtype: int64

我们还可以选取多列或者多行:

data = pd.DataFrame(np.arange(16).reshape((4,4)),index = ['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])
data[['two','three']]
#输出
    two three
Ohio    1   2
Colorado    5   6
Utah    9   10
New York    13  14

#取行
data[:2]
#输出
    one two three   four
Ohio    0   1   2   3
Colorado    4   5   6   7

当然,在选取数据的时候,我们还可以根据逻辑条件来选取:

data[data['three']>5]
#输出
    one two three   four
Colorado    4   5   6   7
Utah    8   9   10  11
New York    12  13  14  15

pandas提供了专门的用于索引DataFrame的方法,即使用ix方法进行索引,不过ix在最新的版本中已经被废弃了,如果要是用标签,最好使用loc方法,如果使用下标,最好使用iloc方法:

#data.ix['Colorado',['two','three']]
data.loc['Colorado',['two','three']]
#输出
two      5
three    6
Name: Colorado, dtype: int64

data.iloc[0:3,2]
#输出
Ohio         2
Colorado     6
Utah        10
Name: three, dtype: int64

修改数据

可以使用一个标量修改DataFrame中的某一列,此时这个标量会广播到DataFrame的每一行上:

data = {
    'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
    'year':[2000,2001,2002,2001,2002],
    'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2
frame2['debt']=16.5
frame2
#输出
year    state   pop debt
one 2000    Ohio    1.5 16.5
two 2001    Ohio    1.7 16.5
three   2002    Ohio    3.6 16.5
four    2001    Nevada  2.4 16.5
five    2002    Nevada  2.9 16.5

也可以使用一个列表来修改,不过要保证列表的长度与DataFrame长度相同:

frame2.debt = np.arange(5)
frame2
#输出
    year    state   pop debt
one 2000    Ohio    1.5 0
two 2001    Ohio    1.7 1
three   2002    Ohio    3.6 2
four    2001    Nevada  2.4 3
five    2002    Nevada  2.9 4

可以使用一个Series,此时会根据索引进行精确匹配:

val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt'] = val
frame2
#输出
    year    state   pop debt
one 2000    Ohio    1.5 NaN
two 2001    Ohio    1.7 -1.2
three   2002    Ohio    3.6 NaN
four    2001    Nevada  2.4 -1.5
five    2002    Nevada  2.9 -1.7

重新索引

使用reindex方法对DataFrame进行重新索引。对DataFrame进行重新索引,可以重新索引行,列或者两个都修改,如果只传入一个参数,则会从新索引行:

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index=[1,4,5],columns=['Ohio','Texas','California'])
frame2 = frame.reindex([1,2,4,5])
frame2
#输出
    Ohio    Texas   California
1   0.0 1.0 2.0
2   NaN NaN NaN
4   3.0 4.0 5.0
5   6.0 7.0 8.0

states = ['Texas','Utah','California']
frame.reindex(columns=states)
#输出
    Texas   Utah    California
1   1   NaN 2
4   4   NaN 5
5   7   NaN 8

填充数据只能按行填充,此时只能对行进行重新索引:

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index = ['a','c','d'],columns = ['Ohio','Texas','California'])
frame.reindex(['a','b','c','d'],method = 'bfill')
#frame.reindex(['a','b','c','d'],method = 'bfill',columns=states) 报错

丢弃指定轴上的值

可以使用drop方法丢弃指定轴上的值,不会对原DataFrame产生影响

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index = ['a','c','d'],columns = ['Ohio','Texas','California'])
frame.drop('a') 
#输出
Ohio    Texas   California
a   0   1   2
c   3   4   5
d   6   7   8

frame.drop(['Ohio'],axis=1)
#输出
    Texas   California
a   1   2
c   4   5
d   7   8

算术运算

DataFrame在进行算术运算时会进行补齐,在不重叠的部分补足NA:

df1 = pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
df2 = pd.DataFrame(np.arange(12).reshape((4,3)),columns = list('bde'),index=['Utah','Ohio','Texas','Oregon'])
df1 + df2
#输出
    b   c   d   e
Colorado    NaN NaN NaN NaN
Ohio    3.0 NaN 6.0 NaN
Oregon  NaN NaN NaN NaN
Texas   9.0 NaN 12.0    NaN
Utah    NaN NaN NaN NaN

可以使用fill_value方法填充NA数据,不过两个df中都为NA的数据,该方法不会填充:

df1.add(df2,fill_value=0)
#输出
    b   c   d   e
Colorado    6.0 7.0 8.0 NaN
Ohio    3.0 1.0 6.0 5.0
Oregon  9.0 NaN 10.0    11.0
Texas   9.0 4.0 12.0    8.0
Utah    0.0 NaN 1.0 2.0

函数应用和映射

numpy的元素级数组方法,也可以用于操作Pandas对象:

frame = pd.DataFrame(np.random.randn(3,3),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
np.abs(frame)
#输出
    b   c   d
Ohio    0.367521    0.232387    0.649330
Texas   3.115632    1.415106    2.093794
Colorado    0.714983    1.420871    0.557722

另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上。DataFrame的apply方法即可实现此功能。

f = lambda x:x.max() - x.min()
frame.apply(f)
#输出
b    3.830616
c    2.835978
d    2.743124
dtype: float64

frame.apply(f,axis=1)
#输出
Ohio        1.016851
Texas       4.530739
Colorado    2.135855
dtype: float64

def f(x):
    return pd.Series([x.min(),x.max()],index=['min','max'])
frame.apply(f)
#输出
    b   c   d
min -0.714983   -1.415106   -0.649330
max 3.115632    1.420871    2.093794

元素级的Python函数也是可以用的,使用applymap方法:

format = lambda x:'%.2f'%x
frame.applymap(format)
#输出
b   c   d
Ohio    0.37    -0.23   -0.65
Texas   3.12    -1.42   2.09
Colorado    -0.71   1.42    -0.56

排序和排名

对于DataFrame,sort_index可以根据任意轴的索引进行排序,并指定升序降序

frame = pd.DataFrame(np.arange(8).reshape((2,4)),index=['three','one'],columns=['d','a','b','c'])
frame.sort_index()
#输出
    d   a   b   c
one 4   5   6   7
three   0   1   2   3

frame.sort_index(1,ascending=False)
#输出
    d   a   b   c
one 4   5   6   7
three   0   1   2   3

DataFrame也可以按照值进行排序:

#按照任意一列或多列进行排序
frame.sort_values(by=['a','b'])
#输出
    d   a   b   c
three   0   1   2   3
one 4   5   6   7

汇总和计算描述统计

DataFrame中的实现了sum、mean、max等方法,我们可以指定进行汇总统计的轴,同时,也可以使用describe函数查看基本所有的统计项:

df = pd.DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=['a','b','c','d'],columns=['one','two'])
df.sum(axis=1)
#输出
one    9.25
two   -5.80
dtype: float64

#Na会被自动排除,可以使用skipna选项来禁用该功能
df.mean(axis=1,skipna=False)
#输出
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64
#idxmax返回间接统计,是达到最大值的索引

df.idxmax()
#输出
one    b
two    d
dtype: object

#describe返回的是DataFrame的汇总统计
#非数值型的与数值型的统计返回结果不同
df.describe()
#输出
one two
count   3.000000    2.000000
mean    3.083333    -2.900000
std 3.493685    2.262742
min 0.750000    -4.500000
25% 1.075000    -3.700000
50% 1.400000    -2.900000
75% 4.250000    -2.100000
max 7.100000    -1.300000

DataFrame也实现了corr和cov方法来计算一个DataFrame的相关系数矩阵和协方差矩阵,同时DataFrame也可以与Series求解相关系数。

frame1 = pd.DataFrame(np.random.randn(3,3),index=list('abc'),columns=list('abc'))
frame1.corr
#输出
<bound method DataFrame.corr of           a         b         c
a  1.253773  0.429059  1.535575
b -0.113987 -2.837396 -0.894469
c -0.548208  0.834003  0.994863>

frame1.cov()
#输出
a   b   c
a   0.884409    0.357304    0.579613
b   0.357304    4.052147    2.442527
c   0.579613    2.442527    1.627843

#corrwith用于计算每一列与Series的相关系数
frame1.corrwith(frame1['a'])
#输出
a    1.000000
b    0.188742
c    0.483065
dtype: float64

处理缺失数据

Pandas中缺失值相关的方法主要有以下三个:

  • isnull方法用于判断数据是否为空数据;
  • fillna方法用于填补缺失数据;
  • dropna方法用于舍弃缺失数据。

上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数:

data = pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]])
data.dropna()
#输出
    0   1   2
0   1.0 6.5 3.0

DataFrame来说,dropna方法如果发现缺失值,就会进行整行删除,不过可以指定删除的方式,how=all,是当整行全是na的时候才进行删除,同时还可以指定删除的轴。

data.dropna(how='all',axis=1,inplace=True)
data
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 NaN NaN
2   NaN NaN NaN
3   NaN 6.5 3.0
DataFrame填充缺失值可以统一填充,也可以按列填充,或者指定一种填充方式:

data.fillna({1:2,2:3})
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 2.0 3.0
2   NaN 2.0 3.0
3   NaN 6.5 3.0

data.fillna(method='ffill')
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 6.5 3.0
2   1.0 6.5 3.0
3   1.0 6.5 3.0

到此这篇关于Pandas-DataFrame知识点汇总的文章就介绍到这了,更多相关Pandas-DataFrame内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 一文教你向Pandas DataFrame添加行

    目录 示例1:向PandasDataFrame添加一行 示例2:向PandasDataFrame添加几行 总结 您可以使用df.loc()函数在Pandas DataFrame的末尾添加一行: #add row to end of DataFrame df.loc[len(df.index)] = [value1, value2, value3, ...] 您可以使用df.append()函数将现有 DataFrame 的几行附加到另一个 DataFrame 的末尾: #append rows

  • Pandas DataFrame数据修改值的方法

    dfmi.iloc[:,1] pandas要修改值先需要了解DataFrame的一些知识 此处参照的是pandas的官方文档 When setting values in a pandas object, care must be taken to avoid what is calledchained indexing. Here is an example. 要修改pandas--DataFrame中的值要注意避免在链式索引上得到的DataFrame的值 这里创建了一个DataFrame d

  • pandas DataFrame.shift()函数的具体使用

    pandas DataFrame.shift()函数可以把数据移动指定的位数 period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列. eg: 有这样一个DataFrame数据: import pandas as pd data1 = pd.DataFrame({ 'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] }) print data1 a b 0 0 9 1 1 8

  • pandas创建DataFrame的方式小结

    如果你是一个pandas初学者,那么不知道你会不会像我一样.在学用列表或者数组创建DataFrame时理不清怎样用数据生成以及想要形状的的Dataframe,那么,现在,你不用自己琢磨了,我这里给你整理了一下,现在我们就来看看这三种生成Dataframe的方式. 1.用传入列表或者数组创建DataFrame 采用列表创建DataFrame nums = [[i for i in range(3)] for _ in range(10)] nums colu = [f'col_{i}' for i

  • 在Pandas DataFrame中插入一列的方法实例

    目录 引言 示例1:插入新列作为第一列 示例2:插入新列作为中间列 示例3:插入新列作为最后一列 补充:按条件选择分组分别赋值 总结 引言 通常,您可能希望在 Pandas DataFrame 中插入一个新列.幸运的是,使用 pandas insert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: loc: 插入列的索引.第一列是 0. column: 赋予新列的名称. value:

  • Pandas修改DataFrame列名的两种方法实例

    目录 解决方法1:通过DataFrame.columns类的自身属性修改 1.暴力修改 2.stirp方法 3.lambda表达式 解决方法2:通过DataFrame.rename()函数修改 1.暴力修改(可以只修改部分列名) 2.lambda表达式 pandas更改DataFrame的行名或列名实例 更改列名 更改行名 总结 输入: $a $b $c $d $e 0 1 2 3 4 5 期望的输出: a  b  c  d  e0  1  2  3  4  5 原数据DataFrame: im

  • pandas中DataFrame重置索引的几种方法

    在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1

  • Pandas-DataFrame知识点汇总

    目录 1.DataFrame的创建 根据字典创建 读取文件 2.DataFrame轴的概念 3.DataFrame一些性质 索引.切片 修改数据 重新索引 丢弃指定轴上的值 算术运算 函数应用和映射 排序和排名 汇总和计算描述统计 处理缺失数据 1.DataFrame的创建 DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值.DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引.DataFrame的创建有多种

  • Python pandas.DataFrame调整列顺序及修改index名的方法

    1. 从字典创建DataFrame >>> import pandas >>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],'mark_date':['2017-03-07','2017-03-07','2017-03-07']} >>> df = pandas.

  • python基础篇之pandas常用基本函数汇总

    目录 前言 1.汇总函数 2.特征统计函数 3.唯一值函数 4.替换函数 总结 前言 这篇主要整理pandas常用的基本函数,主要分为五部分: 汇总函数 特征统计函数 唯一值函数 替换函数 排序函数 1.汇总函数 常用的主要是4个: tail(): 返回表或序列的后n行 head(): 返回表或序列的前n行 info(): 返回表的信息概况 describe(): 返回表中数值列对应的主要统计量 n默认为5 df.describe() #运行截图 Height Weight count 183.

  • python中pandas.DataFrame排除特定行方法示例

    前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • python实现在pandas.DataFrame添加一行

    实例如下所示: from pandas import * from random import * df = DataFrame(columns=('lib', 'qty1', 'qty2'))#生成空的pandas表 for i in range(5):#插入一行<span id="transmark" style="display:none;"></span> df.loc[i] = [randint(-1,1) for n in ran

  • pandas.DataFrame 根据条件新建列并赋值的方法

    实例如下所示: import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen', 'Hangzhou', 'Chongqing'], 'year': [2016,2016,2015,2017,2016, 2016], 'population': [2100, 2300, 1000, 700, 500, 500]} frame = pd.DataFrame(

  • python pandas dataframe 行列选择,切片操作方法

    SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

随机推荐