pytorch 批次遍历数据集打印数据的例子

我就废话不多说了,直接上代码吧!

from os import listdir
import os
from time import time

import torch.utils.data as data
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100,
           fill='=', empty=' ', tip='>', begin='[', end=']', done="[DONE]", clear=True):
  percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
  filledLength = int(length * iteration // total)
  bar = fill * filledLength
  if iteration != total:
    bar = bar + tip
  bar = bar + empty * (length - filledLength - len(tip))
  display = '\r{prefix}{begin}{bar}{end} {percent}%{suffix}' \
    .format(prefix=prefix, begin=begin, bar=bar, end=end, percent=percent, suffix=suffix)
  print(display, end=''), # comma after print() required for python 2
  if iteration == total: # print with newline on complete
    if clear: # display given complete message with spaces to 'erase' previous progress bar
      finish = '\r{prefix}{done}'.format(prefix=prefix, done=done)
      if hasattr(str, 'decode'): # handle python 2 non-unicode strings for proper length measure
        finish = finish.decode('utf-8')
        display = display.decode('utf-8')
      clear = ' ' * max(len(display) - len(finish), 0)
      print(finish + clear)
    else:
      print('')

class DatasetFromFolder(data.Dataset):
  def __init__(self, image_dir):
    super(DatasetFromFolder, self).__init__()
    self.photo_path = os.path.join(image_dir, "a")
    self.sketch_path = os.path.join(image_dir, "b")
    self.image_filenames = [x for x in listdir(self.photo_path) if is_image_file(x)]

    transform_list = [transforms.ToTensor(),
             transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]

    self.transform = transforms.Compose(transform_list)

  def __getitem__(self, index):
    # Load Image
    input = load_img(os.path.join(self.photo_path, self.image_filenames[index]))
    input = self.transform(input)
    target = load_img(os.path.join(self.sketch_path, self.image_filenames[index]))
    target = self.transform(target)

    return input, target

  def __len__(self):
    return len(self.image_filenames)

if __name__ == '__main__':
  dataset = DatasetFromFolder("./dataset/facades/train")
  dataloader = DataLoader(dataset=dataset, num_workers=8, batch_size=1, shuffle=True)
  total = len(dataloader)
  for epoch in range(20):
    t0 = time()
    for i, batch in enumerate(dataloader):
      real_a, real_b = batch[0], batch[1]
      printProgressBar(i + 1, total + 1,
               length=20,
               prefix='Epoch %s ' % str(1),
               suffix=', d_loss: %d' % 1)
    printProgressBar(total, total,
             done='Epoch [%s] ' % str(epoch) +
               ', time: %.2f s' % (time() - t0)
             )

以上这篇pytorch 批次遍历数据集打印数据的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 实现打印模型的参数值

    对于简单的网络 例如全连接层Linear 可以使用以下方法打印linear层: fc = nn.Linear(3, 5) params = list(fc.named_parameters()) print(params.__len__()) print(params[0]) print(params[1]) 输出如下: 由于Linear默认是偏置bias的,所有参数列表的长度是2.第一个存的是全连接矩阵,第二个存的是偏置. 对于稍微复杂的网络 例如MLP mlp = nn.Sequential

  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • pytorch 数据集图片显示方法

    图片显示 pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用. 同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了 CIAFA10数据集 首先载入数据集,这里做了一些数据处理,包括图片尺寸.数据归一化等 import torch from torch.a

  • PyTorch读取Cifar数据集并显示图片的实例讲解

    首先了解一下需要的几个类所在的package from torchvision import transforms, datasets as ds from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np #transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等. #DataLoader读入的数据类型是PIL.Image

  • pytorch 批次遍历数据集打印数据的例子

    我就废话不多说了,直接上代码吧! from os import listdir import os from time import time import torch.utils.data as data import torchvision.transforms as transforms from torch.utils.data import DataLoader def printProgressBar(iteration, total, prefix='', suffix='', d

  • 在pytorch中查看可训练参数的例子

    pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的. pytorch中model.parameters()函数定义如下: def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module paramete

  • 用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

    听说pytorch使用比TensorFlow简单,加之pytorch现已支持windows,所以今天装了pytorch玩玩,第一件事还是写了个简单的CNN在MNIST上实验,初步体验的确比TensorFlow方便. 参考代码(在莫烦python的教程代码基础上修改)如下: import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import tor

  • 手把手教你实现PyTorch的MNIST数据集

    概述 MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图. 获取数据 def get_data(): """获取数据""" # 获取测试集 train = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=torchvision.tran

  • Pytorch加载数据集的方式总结及补充

    目录 前言 一.自己重写定义(Dataset.DataLoader) 二.用Pytorch自带的类(ImageFolder.datasets.DataLoader) 2.1 加载自己的数据集 2.1.1 ImageFolder介绍 2.2.2 ImageFolder加载数据集完整例子 2.2 加载常见的数据集 三.总结 四.transforms变换讲解 五.DataLoader的补充 总结 前言 在用Pytorch加载数据集时,看GitHub上的代码经常会用到ImageFolder.DataLo

  • layui异步加载table表中某一列数据的例子

    layui中table加载数据时 如果数据存放在不同数据表中 那样一个请求拼接每行表格数据 然后统一返回 太慢 //页面加载时请求 另一张表的数据 var slotGroup; admin.req({ url: '请求地址' , method: 'POST' , dataType: "json" , async: false , success: function (res) { slotGroup = res.data; console.log(slotGroup) } }); ta

  • 创建Shapefile文件并写入数据的例子

    基本思路 使用GDAL创建Shapefile数据的基本步骤如下: 使用osgeo.ogr.Driver的CreateDataSource()方法创建osgeo.ogr.DataSource矢量数据集 使用osgeo.ogr.DataSource的CreateLayer()方法创建一个图层 使用osgeo.ogr.FieldDefn()定义Shapefile文件的属性字段 创建osgeo.ogr.Feature对象,设置每个属性字段的值,使用Feature对象的SetGeometry()定义几何属

  • Pytorch 神经网络—自定义数据集上实现教程

    第一步.导入需要的包 import os import scipy.io as sio import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, ut

  • pytorch下大型数据集(大型图片)的导入方式

    使用torch.utils.data.Dataset类 处理图片数据时, 1. 我们需要定义三个基本的函数,以下是基本流程 class our_datasets(Data.Dataset): def __init__(self,root,is_resize=False,is_transfrom=False): #这里只是个参考.按自己需求写. self.root=root self.is_resize=is_resize self.is_transfrom=is_transfrom self.i

  • 关于Pytorch的MNIST数据集的预处理详解

    关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等. 操作系统:ubuntu18.04 显卡:GTX1080ti python版本:2.7(3.7) 网络架构 具有4层的CNN具有以下架构. 输入层:784个节点(MNIST图像大小) 第一卷积层:5x5x32 第一个最大池层 第二卷积层:5x5x64 第二个最大池层 第三个完全连接层:1024个节点 输出层:10个节点(M

随机推荐