python机器学习逻辑回归随机梯度下降法

目录
  • 写在前面
  • 随机梯度下降法
  • 参考文献

写在前面

随机梯度下降法就在随机梯度上。意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的。全批量梯度下降是从一个点接着一点是有顺序的,全部数据点都要求梯度且有顺序。

全批量梯度下降虽然稳定,但速度较慢;

SGD虽然快,但是不够稳定

随机梯度下降法

随机梯度下降法(Stochastic Gradient Decent,
SGD)是对全批量梯度下降法计算效率的改进算法。本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;SGD的优势是更快地计算梯度。

代码

'''
随机梯度下降法(Stochastic Gradient Decent, SGD)
是对全批量梯度下降法计算效率的改进算法。本
质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近;
SGD的优势是更快地计算梯度。
'''
import pandas as pd
import numpy as np
import os
os.getcwd()
# F:\\pythonProject3\\data\\data\\train.csv
# dataset_path = '..'
# 这是一个全批量梯度下降(full-batch gradient descent)的应用。
# 这个问题是一个回归问题
# 我们给出美国某大型问答社区从2010年10月1日到2016年11月30日,
# 每天新增的问题的个数和回答的个数。
# 任务是预测2016年12月1日到2017年5月1日,该问答网站每天新增的问题数和回答数。
train = pd.read_csv('..\\train.csv')
# 导入数据
# train = pd.read_csv('train.csv')
test = pd.read_csv('..\\test.csv')
submit = pd.read_csv('..\\sample_submit.csv')
path1=os.path.abspath('.')
print("path1@@@@@",path1)
path2=os.path.abspath('..')
print("path2@@@@@",path2)
print(train)
# 初始设置
beta = [1,1] #初始点
alpha = 0.2 #学习率,也就是步长
tol_L = 0.1 #阈值,也就是精度
# 对x进行归一化,train 是训练数据的二维表格
max_x = max(train['id']) #max_x是总共的id数
x = train['id'] / max_x #所有的id都除于max_x
y = train['questions'] # train二维表格中的questions列赋给y
type(train['id'])
print("train['id']#######\n",train['id'])
print("type(train['id'])###\n\n",x)
print("max_x#######",max_x)
#为了计算方向
def compute_grad_SGD(beta, x, y):
    '''
    :param beta: 是初始点
    :param x: 是自变量
    :param y: 是真是值
    :return: 梯度数组
    '''
    grad = [0, 0]
    r = np.random.randint(0, len(x)) #在0-len(x)之间随机生成一个数
    grad[0] = 2. * np.mean(beta[0] + beta[1] * x[r] - y[r]) #求beta[1,1],中第1个数的梯度
    grad[1] = 2. * np.mean(x * (beta[0] + beta[1] * x - y))#求beta[1,1],中第2个数的梯度
    return np.array(grad)
#为了计算下一个点在哪,
def update_beta(beta, alpha, grad):
    '''
    :param beta: 第一点,初始点
    :param alpha: 学习率,也就时步长
    :param grad: 梯度
    :return:
    '''
    new_beta = np.array(beta) - alpha * grad
    return new_beta
# 定义计算RMSE的函数
# 均方根误差(RMSE)
def rmse(beta, x, y):
    squared_err = (beta[0] + beta[1] * x - y) ** 2 # beta[0] + beta[1] * x是预测值,y是真实值,
    res = np.sqrt(np.mean(squared_err))
    return res
# 进行第一次计算
grad = compute_grad_SGD(beta, x, y) #调用计算梯度函数,计算梯度
loss = rmse(beta, x, y) #调用损失函数,计算损失
beta = update_beta(beta, alpha, grad) #更新下一点
loss_new = rmse(beta, x, y) #调用损失函数,计算下一个损失
# 开始迭代
i = 1
while np.abs(loss_new - loss) > tol_L:
    beta = update_beta(beta, alpha, grad)
    grad = compute_grad_SGD(beta, x, y)
    if i % 100 == 0:
        loss = loss_new
        loss_new = rmse(beta, x, y)
        print('Round %s Diff RMSE %s'%(i, abs(loss_new - loss)))
    i += 1
print('Coef: %s \nIntercept %s'%(beta[1], beta[0]))
res = rmse(beta, x, y)
print('Our RMSE: %s'%res)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train[['id']], train[['questions']])
print('Sklearn Coef: %s'%lr.coef_[0][0])
print('Sklearn Coef: %s'%lr.intercept_[0])
res = rmse([936.051219649, 2.19487084], train['id'], y)
print('Sklearn RMSE: %s'%res)

参考文献

随机梯度下降法

(0)

相关推荐

  • python实现随机梯度下降(SGD)

    使用神经网络进行样本训练,要实现随机梯度下降算法.这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义): def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data)#有多少个测试集 n = len(training_data) for j in xrange(epochs): random.shuf

  • python实现随机梯度下降法

    看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一.为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有) 也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解.为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法. 二.核心思想 对于权值的更新不再通过遍历全部的数据集,而是选择其中

  • python实现梯度下降算法

    梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法.当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现. 本文主要以线性回归算法损失函数求极小值来说明如何使用梯度下降算法并给出python实现.若有不正确的地方,希望读者能指出. 梯度下降 梯度下降原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快. 在线性回归算法中,损失函数为 在求极小值时,在数据量很小的时候,可以使用矩阵求逆的方式求最优的θ值.但当数

  • Spark MLlib随机梯度下降法概述与实例

    机器学习算法中回归算法有很多,例如神经网络回归算法.蚁群回归算法,支持向量机回归算法等,其中也包括本篇文章要讲述的梯度下降算法,本篇文章将主要讲解其基本原理以及基于Spark MLlib进行实例示范,不足之处请多多指教. 梯度下降算法包含多种不同的算法,有批量梯度算法,随机梯度算法,折中梯度算法等等.对于随机梯度下降算法而言,它通过不停的判断和选择当前目标下最优的路径,从而能够在最短路径下达到最优的结果.我们可以在一个人下山坡为例,想要更快的到达山低,最简单的办法就是在当前位置沿着最陡峭的方向下

  • python机器学习逻辑回归随机梯度下降法

    目录 写在前面 随机梯度下降法 参考文献 写在前面 随机梯度下降法就在随机梯度上.意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的.全批量梯度下降是从一个点接着一点是有顺序的,全部数据点都要求梯度且有顺序. 全批量梯度下降虽然稳定,但速度较慢: SGD虽然快,但是不够稳定 随机梯度下降法 随机梯度下降法(Stochastic Gradient Decent, SGD)是对全批量梯度下降法计算效率的改进算法.本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近:SGD的

  • Python语言描述随机梯度下降法

    1.梯度下降 1)什么是梯度下降? 因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降. 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走? 先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因. 如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点.

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • Python机器学习logistic回归代码解析

    本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下. Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数 拟合.插值和逼近是数值分析的三大工具 回归:对一直公式的位置参数进行估计 拟合:把平面上的一些系列点,用一条光滑曲线连接起来 logistic主要思想:根据现有数据对分类边界线建立回归公式.以此进行分类 sigmoid函数:在神经网络中它是所谓的激励函数.当输入大于0时,输出趋向于1,输入小于0时,输出趋向0

  • python 实现逻辑回归

    逻辑回归 适用类型:解决二分类问题 逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类.所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间 线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1) 将其通过Sigmoid函数,获得逻辑回归的决策函数 使用Sigmoid函数的原因: 可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率 可以将1/2作为决策边界 数学特性好,

  • Python实现多元线性回归的梯度下降法

    目录 1. 读取数据 2.定义代价函数 3. 梯度下降 4.可视化展示 1. 读取数据 首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可.这里以data.csv为例,这里做的是二元回归.导入相关库,及相关代码如下. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D data = np.loadtxt("data.csv", delimiter

  • Python利用逻辑回归分类实现模板

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 好了,下面开始正文. 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集. 虽然代码类似于梯度下降,但他是个分类算法 定义sigmoid函数 def sigmoid(x): return 1/(1+np.exp(-x)

  • python实现逻辑回归的示例

    代码 import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_classification def initialize_params(dims): w = np.zeros((dims, 1)) b = 0 return w, b def sigmoid(x): z = 1 / (1 + np.exp(-x)) return z def logi

随机推荐