python 实现非极大值抑制算法(Non-maximum suppression, NMS)

NMS 算法在目标检测,目标定位领域有较广泛的应用。

算法原理

非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素。

算法的作用

当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框

适用场景

一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可)。

算法的输入

算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表示,前 4 维表示四个角的坐标,第 5 维表示分数),阈值 thresh

算法的输出

正确的候选框组(dets 的一个子集)。

细节

  • 起始,设所有的框都没有被抑制,所有框按照 score 从大到小排序。
  • 从第 0 个框(分数最高)开始遍历:对于每一个框,如果该框没有被抑制,就将所有与它 IoU 大于 thresh 的框设为抑制。
  • 返回没被抑制的框。

参考代码

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import numpy as np
cimport numpy as np

cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
  return a if a >= b else b

cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
  return a if a <= b else b

def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
  cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
  cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
  cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
  cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
  cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]

  cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
  cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]

  cdef int ndets = dets.shape[0]
  cdef np.ndarray[np.int_t, ndim=1] suppressed = \
      np.zeros((ndets), dtype=np.int)

  # nominal indices
  cdef int _i, _j
  # sorted indices
  cdef int i, j
  # temp variables for box i's (the box currently under consideration)
  cdef np.float32_t ix1, iy1, ix2, iy2, iarea
  # variables for computing overlap with box j (lower scoring box)
  cdef np.float32_t xx1, yy1, xx2, yy2
  cdef np.float32_t w, h
  cdef np.float32_t inter, ovr

  keep = []
  for _i in range(ndets):
    i = order[_i]
    if suppressed[i] == 1:
      continue
    keep.append(i)
    ix1 = x1[i]
    iy1 = y1[i]
    ix2 = x2[i]
    iy2 = y2[i]
    iarea = areas[i]
    for _j in range(_i + 1, ndets):
      j = order[_j]
      if suppressed[j] == 1:
        continue
      xx1 = max(ix1, x1[j])
      yy1 = max(iy1, y1[j])
      xx2 = min(ix2, x2[j])
      yy2 = min(iy2, y2[j])
      w = max(0.0, xx2 - xx1 + 1)
      h = max(0.0, yy2 - yy1 + 1)
      inter = w * h
      ovr = inter / (iarea + areas[j] - inter)
      if ovr >= thresh:
        suppressed[j] = 1

  return keep

以上就是python 实现非极大值抑制算法(Non-maximum suppression, NMS)的详细内容,更多关于python 非极大值抑制算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 决策树算法的实现

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr

  • python 贪心算法的实现

    贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 基本思路 思想 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解.每一步只考虑一个数据,他的选取应该满足局部优化的条件.若

  • python实现粒子群算法

    粒子群算法 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS).CAS理论于1994年正式提出,CAS中的成员称为主体.比如研究鸟群系统,每个鸟在这个系统中就称为主体.主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程"学习"或"积累经验"改变自身结构与行为.整个系统的演变或进化包括:新层次的产生(小鸟的出生):分化和多样性的出现(鸟群中的鸟分成许多小的群):新的主题的出现(鸟寻找食物过程中,不断发现新的食物). P

  • python em算法的实现

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al

  • python 如何实现遗传算法

    1.基本概念 遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的"适者生存,优胜劣汰"基本法则的智能搜索算法.该法则很好地诠释了生物进化的自然选择过程.遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择.交叉和变异算子模拟生物的进化过程,然后利用"优胜劣汰"法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间.

  • Python 实现国产SM3加密算法的示例代码

    SM3是中华人民共和国政府采用的一种密码散列函数标准,由国家密码管理局于2010年12月17日发布.主要用于报告文件数字签名及验证. Python3代码如下: from math import ceil ############################################################################## # # 国产SM3加密算法 # #####################################################

  • Python实现七个基本算法的实例代码

    1.顺序查找 当数据存储在诸如列表的集合中时,我们说这些数据具有线性或顺序关系. 每个数据元素都存储在相对于其他数据元素的位置. 由于这些索引值是有序的,我们可以按顺序访问它们. 这个过程产实现的搜索即为顺序查找. 顺序查找原理剖析:从列表中的第一个元素开始,我们按照基本的顺序排序,简单地从一个元素移动到另一个元素,直到找到我们正在寻找的元素或遍历完整个列表.如果我们遍历完整个列表,则说明正在搜索的元素不存在. 代码实现:该函数需要一个列表和我们正在寻找的元素作为参数,并返回一个是否存在的布尔值

  • python 密码学示例——理解哈希(Hash)算法

    Hash 是密码学安全性的基石,它引入了单向函数(one-way function)和指纹(fingerprint)的概念.即: 对于任意输入,都可以产生相同的.唯一的输出值 输出值中不包含输入值的任何线索 一.保密性(confidentiality)与完整性(integrity) 简单来说,信息的保密性确保除授权人员以外的任何人都无法读取该消息,信息的完整性则确保除授权人员以外的任何人都无法修改该消息. 很多时候一段加密的消息无法被他人读取和理解(保密性),并不意味着该密文不会在传播过程中被截

  • Python实现EM算法实例代码

    EM算法实例 通过实例可以快速了解EM算法的基本思想,具体推导请点文末链接.图a是让我们预热的,图b是EM算法的实例. 这是一个抛硬币的例子,H表示正面向上,T表示反面向上,参数θ表示正面朝上的概率.硬币有两个,A和B,硬币是有偏的.本次实验总共做了5组,每组随机选一个硬币,连续抛10次.如果知道每次抛的是哪个硬币,那么计算参数θ就非常简单了,如 下图所示: 如果不知道每次抛的是哪个硬币呢?那么,我们就需要用EM算法,基本步骤为:   1.给θ_AθA​和θ_BθB​一个初始值:   2.(E-

  • python 实现非极大值抑制算法(Non-maximum suppression, NMS)

    NMS 算法在目标检测,目标定位领域有较广泛的应用. 算法原理 非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素. 算法的作用 当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框 适用场景 一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可). 算法的输入 算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表

  • 详解非极大值抑制算法之Python实现

    一.概述 这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况.这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口. NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪.数据挖掘

  • Python 非极大值抑制(NMS)的四种实现详解

    目录 一.  几点说明 1. 简单说明Cython: 2. 简单介绍NMS: 二.  四种方法实现 1. 纯python实现:nms_py.py 2.直接利用Cython模块编译:nms_py1.pyx 3. 更改变量定义后再利用Cython模块编译:nms_py2.pyx 4. 在方法3的基础上利用GPU:gpu_nms.pyx 方法1:纯python语言实现:简介方便.速度慢 方法2:直接利用Cython模块编译 方法3:先将全部变量定义为静态类型,再利用Cython模块编译 方法4:在方法

  • python目标检测非极大抑制NMS与Soft-NMS

    目录 睿智的目标检测31——非极大抑制NMS与Soft-NMS 注意事项学习前言什么是非极大抑制NMS1.非极大抑制NMS的实现过程2.柔性非极大抑制Soft-NMS的实现过程 注意事项 Soft-NMS对于大多数数据集而言,作用比较小,提升效果非常不明显,它起作用的地方是大量密集的同类重叠场景,大量密集的不同类重叠场景其实也没什么作用,同学们可以借助Soft-NMS理解非极大抑制的含义,但是实现的必要性确实不强,在提升网络性能上,不建议死磕Soft-NMS. 已对该博文中的代码进行了重置,视频

  • Python实现Canny及Hough算法代码实例解析

    任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径. 效果 代码实现 Canny边缘检测: # Author: Ji Qiu (BUPT) # filename: my_canny.py import cv2 import numpy as np class Canny: def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold)

  • Python正则表达式非贪婪、多行匹配功能示例

    本文实例讲述了Python正则表达式非贪婪.多行匹配功能.分享给大家供大家参考,具体如下: 一些regular的tips: 1 非贪婪flag >>> re.findall(r"a(\d+?)","a23b") # 非贪婪模式 ['2'] >>> re.findall(r"a(\d+)","a23b") ['23'] 注意比较这种情况: >>> re.findall(r&q

  • Python实现的数据结构与算法之双端队列详解

    本文实例讲述了Python实现的数据结构与算法之双端队列.分享给大家供大家参考.具体分析如下: 一.概述 双端队列(deque,全名double-ended queue)是一种具有队列和栈性质的线性数据结构.双端队列也拥有两端:队首(front).队尾(rear),但与队列不同的是,插入操作在两端(队首和队尾)都可以进行,删除操作也一样. 二.ADT 双端队列ADT(抽象数据类型)一般提供以下接口: ① Deque() 创建双端队列 ② addFront(item) 向队首插入项 ③ addRe

  • Python实现的最近最少使用算法

    本文实例讲述了Python实现的最近最少使用算法.分享给大家供大家参考.具体如下: # lrucache.py -- a simple LRU (Least-Recently-Used) cache class # Copyright 2004 Evan Prodromou <evan@bad.dynu.ca> # Licensed under the Academic Free License 2.1 # Licensed for ftputil under the revised BSD

  • Python利用正则表达式实现计算器算法思路解析

    (1)不使用eval()等系统自带的计算方法 (2)实现四则混合运算.括号优先级解析 思路: 1.字符串预处理,将所有空格去除 2.判断是否存在括号运算,若存在进行第3步,若不存在则直接进入第4步 3.利用正则表达式获取最底层括号内的四则运算表达式 4.将四则运算表达式进行预处理:表达式开头有负数时,在表达式前加上一个0 5.利用re.split().re.findall()方法,通过加减符号,对四则运算进行拆分为乘除运算式和数字,并保留对应的位置下标. 6.利用re.split().re.fi

  • Python socket非阻塞模块应用示例

    本文实例讲述了Python socket非阻塞模块应用.分享给大家供大家参考,具体如下: 一 服务端程序 # 导入模块 import socketserver import random # 定义一个类 class MyServer(socketserver.BaseRequestHandler): # 如果handle方法出现报错,则会进行跳过 # setup方法和finish方法无论如何都会进行执行 # 首先执行setup def setup(self): pass # 然后执行handle

随机推荐