Python操作CSV格式文件的方法大全

目录
  • (一)CSV格式文件
  • (二)CSV库操作csv格式文本
  • (三)pandas库操作CSV文件
  • 总结

(一)CSV格式文件

1.说明

CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表。

(二)CSV库操作csv格式文本

操作一下表格数据:

1.读取表头的2中方式

#方式一
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    rows=[row for row in  reader]
    print(rows[0])

----------
#方式二
import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)

结果演示:['姓名', '年龄', '职业', '家庭地址', '工资']

2.读取文件某一列数据

#1.获取文件某一列数据
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    column=[row[0] for row in  reader]
    print(column)

结果演示:['姓名', '张三', '李四', '王五', 'Kaina']

3.向csv文件中写入数据

#1.向csv文件中写入数据
import csv
with open("D:\\test.csv",'a') as f:
     row=['曹操','23','学生','黑龙江','5000']
     write=csv.writer(f)
     write.writerow(row)
     print("写入完毕!")

结果演示:

4.获取文件头及其索引

import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)
    #4.获取文件头及其索引
    for index,column_header in enumerate(head_row):
        print(index,column_header)

结果演示:
['姓名', '年龄', '职业', '家庭地址', '工资']
0 姓名
1 年龄
2 职业
3 家庭地址
4 工资

5.获取某列的最大值

# ['姓名', '年龄', '职业', '家庭地址', '工资']
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    header_row=next(reader)
    # print(header_row)
    salary=[]
    for row in reader:
        #把第五列数据保存到列表salary中
         salary.append(int(row[4]))
    print(salary)
    print("员工最高工资为:"+str(max(salary)))

结果演示:员工最高工资为:10000

6.复制CSV格式文件

原文件test.csv

import csv
f=open('test.csv')
#1.newline=''消除空格行
aim_file=open('Aim.csv','w',newline='')
write=csv.writer(aim_file)
reader=csv.reader(f)
rows=[row for row in reader]
#2.遍历rows列表
for row in rows:
    #3.把每一行写到Aim.csv中
    write.writerow(row)

01.未添加关键字参数newline=' '的结果:

02添加关键字参数newline=' '的Aim.csv文件的内容:

(三)pandas库操作CSV文件

csv文件内容:

1.安装pandas库:pip install pandas

2.读取csv文件所有数据

 import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data)

结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000

3.describe()方法数据统计

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #了解更多describe()知识,ctr+鼠标左键
    print(data.describe())

结果演示:
             年龄            工资
count   5.00000      5.000000
mean   25.20000   6400.000000
std     3.03315   2966.479395
min    22.00000   2000.000000
25%    22.00000   6000.000000
50%    26.00000   6000.000000
75%    28.00000   8000.000000
max    28.00000  10000.000000

4.读取文件前几行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取前2行数据
    # head_datas = data.head(0)
    head_datas=data.head(2)
    print(head_datas)

结果演示:
   姓名  年龄   职业  家庭地址    工资
0  张三  22   厨师   北京市  6000
1  李四  26  摄影师  湖南长沙  8000

5.读取某一行所有数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行所有数据
    print(data.ix[0,])

结果演示:
姓名        张三
年龄        22
职业        厨师
家庭地址     北京市
工资      6000

6.读取某几行的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行、第二行、第四行的所有数据
    print(data.ix[[0,1,3],:])

结果演示:
      姓名  年龄   职业  家庭地址    工资
0     张三  22   厨师   北京市  6000
1     李四  26  摄影师  湖南长沙  8000
3  Kaina  22   学生   黑龙江  2000

7.读取所有行和列数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取所有行和列数据
    print(data.ix[:,:])

结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000

8.读取某一列的所有行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    # print(data.ix[:, 4])
    print(data.ix[:,'工资'])

结果演示:
0     6000
1     8000
2    10000
3     2000
4     6000
Name: 工资, dtype: int64

9.读取某几列的某几行

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data.ix[[0,1,3],['姓名','职业','工资']])

结果演示:
      姓名   职业    工资
0     张三   厨师  6000
1     李四  摄影师  8000
3  Kaina   学生  2000

10.读取某一行和某一列对应的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第三行的第三列
    print("职业---"+data.ix[2,2])

结果演示:职业---程序员

11.CSV数据的导入导出(复制CSV文件)

读方式01:

import pandas as pd
#1.读入数据
data=pd.read_csv(file)

写出数据02:

import pandas as pd
#1.写出数据,目标文件是Aim.csv
data.to_csv('Aim.csv')

其他:

01.读取网络数据:
import pandas as pd
data_url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv"
#填写url读取
df = pd.read_csv(data_url)

----------
02.读取excel文件数据
import pandas as pd
data = pd.read_excel(filepath)

实例演示:

1.test.csv原文件内容

2.现在把test.csv中的内容复制到Aim.csv中

import pandas as pd
file=open('test.csv')
#1.读取file中的数据
data=pd.read_csv(file)
#2.把data写到目标文件Aim.csv中
data.to_csv('Aim.csv')
print(data)

结果演示:

注:pandas模块处理Excel文件和处理CSV文件差不多!

参考文档:https://docs.python.org/3.6/library/csv.html

总结

到此这篇关于Python操作CSV格式文件的文章就介绍到这了,更多相关Python操作CSV文件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python操作csv文件实例详解

    一.Python读取csv文件 说明:以Python3.x为例 #读取csv文件方法1 import csv csvfile = open('csvWrite.csv',newline='')#打开一个文件 csvReader = csv.reader(csvfile)#返回的可迭代类型 print(type(csvReader)) for content in csvReader: print(content) csvfile.close()#关闭文件 //运行结果如下: <class '_c

  • python对csv文件追加写入列的方法

    python对csv文件追加写入列,具体内容如下所示: 原始数据 [外链图片转存失败(img-zQSQWAyQ-1563597916666)(C:\Users\innduce\AppData\Roaming\Typora\typora-user-images\1557663419920.png)] import pandas as pd import numpy as np data = pd.read_csv(r'平均值.csv') print(data.columns)#获取列索引值 dat

  • Python写入CSV文件的方法

    本文实例讲述了Python写入CSV文件的方法.分享给大家供大家参考.具体如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo.call.me:) #win+python2.7.x import csv csvfile = file('csvtest.csv', 'wb') writer = csv.writer(csvfile) writer.writerow(['id', 'url', 'keywords']) data = [ ('1', 'http

  • python读取csv文件示例(python操作csv)

    复制代码 代码如下: import csvfor line in open("test.csv"):name,age,birthday = line.split(",")name = name.strip(' \t\r\n');age = age.strip(' \t\r\n');birthday = birthday.strip(' \t\r\n'); print (name + '\t' + age + '\t' + birthday) csv文件 复制代码 代

  • python读写csv文件方法详细总结

    python提供了大量的库,可以非常方便的进行各种操作,现在把python中实现读写csv文件的方法使用程序的方式呈现出来. 在编写python程序的时候需要csv模块或者pandas模块,其中csv模块使不需要重新下载安装的,pandas模块需要按照对应的 python版本安装. 在python2环境下安装pandas的方式是: sudo pip install pandas 在python3环境下安装pandas的方式是: sudo pip3 install pandas 1.使用csv读写

  • Python将列表数据写入文件(txt, csv,excel)

    写入txt文件 def text_save(filename, data):#filename为写入CSV文件的路径,data为要写入数据列表. file = open(filename,'a') for i in range(len(data)): s = str(data[i]).replace('[','').replace(']','')#去除[],这两行按数据不同,可以选择 s = s.replace("'",'').replace(',','') +'\n' #去除单引号,

  • Python使用pandas处理CSV文件的实例讲解

    Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin

  • python写入数据到csv或xlsx文件的3种方法

    本文实例为大家分享了三种方式使用python写数据到csv或xlsx文件,供大家参考,具体内容如下 第一种:使用csv模块,写入到csv格式文件 # -*- coding: utf-8 -*- import csv with open("my.csv", "a", newline='') as f: writer = csv.writer(f) writer.writerow(["URL", "predict", "

  • 利用Python如何将数据写到CSV文件中

    前言 我们从网上爬取数据,最后一步会考虑如何存储数据.如果数据量不大,往往不会选择存储到数据库,而是选择存储到文件中,例如文本文件.CSV 文件.xls 文件等.因为文件具备携带方便.查阅直观. Python 作为胶水语言,搞定这些当然不在话下.但在写数据过程中,经常因数据源中带有中文汉字而报错.最让人头皮发麻的编码问题. 我先说下编码相关的知识.编码方式有很多种:UTF-8, GBK, ASCII 等. ASCII 码是美国在上个世纪 60 年代制定的一套字符编码.主要是规范英语字符和二进制位

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

随机推荐