Python性能分析工具pyinstrument提高代码效率

目录
  • 安装
  • 简单的使用
  • 分析 Flask 代码
  • 分析 Django 代码
  • 分析异步代码
  • 工作原理
  • 最后的话

天下武功,唯快不破。

编程也不例外,你的代码跑的快,你能快速找出代码慢的原因,你的码功就高。

安装

pip install pyinstrument

简单的使用

在程序的开始,启动 pyinstrument 的 Profiler,结束时关闭 Profiler 并打印分析结果如下:

from pyinstrument import Profiler
profiler = Profiler()
profiler.start()
# 这里是你要分析的代码
profiler.stop()
profiler.print()

比如这段代码 123.py,我们可以清楚的看到是列表推导式比较慢:

from pyinstrument import Profiler
profiler = Profiler()
profiler.start()
# 这里是你要分析的代码
a = [i for i in range(100000)]
b = (i for i in range(100000))
rofiler.stop()
profiler.print()

上述分析需要修改源代码,如果你使用命令行工具,就不需要修改源代码,只需要执行 pyinstrument xxxx.py 即可:

比如有这样一段排序的程序 c_sort.py:

import sys
import time
import numpy as np
arr = np.random.randint(0, 10, 10)
def slow_key(el):
    time.sleep(0.01)
    return el
arr = list(arr)
for i in range(10):
    arr.sort(key=slow_key)
print(arr)
 

这段代码里面故意放了一句 time.sleep(0.01) 来延迟性能,看看 pyinstrument 能否识别,命令行执行 pyinstrument c_sort.py:

从结果来看,程序运行了 1.313 秒,而 sleep 就运行了 1.219 秒,很明显是瓶颈,现在我们把它删除,再看看结果:

删除之后,性能最慢的就是 numpy 模块的初始化代码 __init__.py了,不过这些代码不是自己写的,而且并不是特别慢,就不需要去关心了。

分析 Flask 代码

Web 应用也可以使用这个来找出性能瓶颈,比如 flask,只需要在请求之前记录时间,在请求之后统计时间,只需要在 flask 的请求拦截器里面这样写:

from flask import Flask, g, make_response, request
app = Flask(__name__)
@app.before_request
def before_request():
    if "profile" in request.args:
        g.profiler = Profiler()
        g.profiler.start()
@app.after_request
def after_request(response):
    if not hasattr(g, "profiler"):
        return response
    g.profiler.stop()
    output_html = g.profiler.output_html()
    return make_response(output_html)

假如有这样一个 API:

@app.route("/dosomething")
def do_something():
    import requests
    requests.get("http://google.com")
    return "Google says hello!"

为了测试这个 API 的瓶颈,我们可以在 url 上加一个参数 profile 就可以:http://127.0.0.1:5000/dosomething?profile,哪一行代码执行比较慢,结果清晰可见:

分析 Django 代码

分析 Django 代码也非常简单,只需要在 Django 的配置文件的 MIDDLEWARE 中添加

"pyinstrument.middleware.ProfilerMiddleware",

然后就可以在 url 上加一个参数 profile 就可以:

如果你不希望所有人都能看到,只希望管理员可以看到,settings.py 可以添加这样的代码:

def custom_show_pyinstrument(request):
    return request.user.is_superuser
PYINSTRUMENT_SHOW_CALLBACK = "%s.custom_show_pyinstrument" % __name__

如果不想通过 url 后面加参数的方式查看性能分析,可以在 settings.py 文件中添加:

PYINSTRUMENT_PROFILE_DIR = 'profiles'

这样,每次访问一次 Django 接口,就会将分析结果以 html 文件形式保存在 项目目录下的 profiles 文件夹中。

分析异步代码

简单的异步代码分析:

async_example_simple.py:

import asyncio
from pyinstrument import Profiler
async def main():
    p = Profiler()
    with p:
        print("Hello ...")
        await asyncio.sleep(1)
        print("... World!")
    p.print()
asyncio.run(main())

复杂一些的异步代码分析:

import asyncio
import time
import pyinstrument
def do_nothing():
    pass
def busy_wait(duration):
    end_time = time.time() + duration
    while time.time() < end_time:
        do_nothing()
async def say(what, when, profile=False):
    if profile:
        p = pyinstrument.Profiler()
        p.start()
    busy_wait(0.1)
    sleep_start = time.time()
    await asyncio.sleep(when)
    print(f"slept for {time.time() - sleep_start:.3f} seconds")
    busy_wait(0.1)
    print(what)
    if profile:
        p.stop()
        p.print(show_all=True)
loop = asyncio.get_event_loop()
loop.create_task(say("first hello", 2, profile=True))
loop.create_task(say("second hello", 1, profile=True))
loop.create_task(say("third hello", 3, profile=True))
loop.run_forever()
loop.close()

工作原理

Pyinstrument 每 1ms 中断一次程序,并在该点记录整个堆栈。它使用 C 扩展名和 PyEval_SetProfile 来做到这一点,但只每 1 毫秒读取一次读数。你可能觉得报告的样本数量有点少,但别担心,它不会降低准确性。默认间隔 1ms 是记录堆栈帧的下限,但如果在单个函数调用中花费了很长时间,则会在该调用结束时进行记录。如此有效地将这些样本“打包”并在最后记录。

Pyinstrument 是一个统计分析器,并不跟踪,它不会跟踪您的程序进行的每个函数调用。相反,它每 1 毫秒记录一次调用堆栈。与其他分析器相比,统计分析器的开销比跟踪分析器低得多。

比如说,我想弄清楚为什么 Django 中的 Web 请求很慢。如果我使用 cProfile,我可能会得到这个:

151940 function calls (147672 primitive calls) in 1.696 seconds
   Ordered by: cumulative time
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    1.696    1.696 profile:0(<code object <module> at 0x1053d6a30, file "./manage.py", line 2>)
        1    0.001    0.001    1.693    1.693 manage.py:2(<module>)
        1    0.000    0.000    1.586    1.586 __init__.py:394(execute_from_command_line)
        1    0.000    0.000    1.586    1.586 __init__.py:350(execute)
        1    0.000    0.000    1.142    1.142 __init__.py:254(fetch_command)
       43    0.013    0.000    1.124    0.026 __init__.py:1(<module>)
      388    0.008    0.000    1.062    0.003 re.py:226(_compile)
      158    0.005    0.000    1.048    0.007 sre_compile.py:496(compile)
        1    0.001    0.001    1.042    1.042 __init__.py:78(get_commands)
      153    0.001    0.000    1.036    0.007 re.py:188(compile)
  106/102    0.001    0.000    1.030    0.010 __init__.py:52(__getattr__)
        1    0.000    0.000    1.029    1.029 __init__.py:31(_setup)
        1    0.000    0.000    1.021    1.021 __init__.py:57(_configure_logging)
        2    0.002    0.001    1.011    0.505 log.py:1(<module>)

看完是不是还是一脸懵逼,通常很难理解您自己的代码如何与这些跟踪相关联。Pyinstrument 记录整个堆栈,因此跟踪昂贵的调用要容易得多。它还默认隐藏库框架,让您专注于影响性能的应用程序/模块:

  _     ._   __/__   _ _  _  _ _/_   Recorded: 14:53:35  Samples:  131
 /_//_/// /_\ / //_// / //_'/ //    Duration: 3.131     CPU time: 0.195
/   _/                    v3.0.0b3
Program: examples/django_example/manage.py runserver --nothreading --noreload
3.131 <module>  manage.py:2
└─ 3.118 execute_from_command_line  django/core/management/__init__.py:378
      [473 frames hidden]  django, socketserver, selectors, wsgi...
         2.836 select  selectors.py:365
         0.126 _get_response  django/core/handlers/base.py:96
         └─ 0.126 hello_world  django_example/views.py:4

最后的话

本文分享了 pyinstrument 的用法,有了这个性能分析神器,以后优化代码可以节省很多时间了,这样的效率神器很值得分享,毕竟人生苦短,能多点时间干点有意思的不香么?

以上就是Python性能分析工具pyinstrument提高代码效率的详细内容,更多关于Python性能分析工具pyinstrument的资料请关注我们其它相关文章!

(0)

相关推荐

  • 用Python编写分析Python程序性能的工具的教程

    虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 分析程序的性能可以归结为回答四个基本问题: 正运行的多快 速度瓶颈在哪里 内存使用率是多少 内存泄露在哪里 下面,我们将用一些神奇的工具深入到这些问题的答案中去. 用 time 粗粒度的计算时间 让我们开始通过使用一个快速和粗暴的方法计算我们的代码:传统的 unix time 工具. $ time python yourprogram.py

  • 每个 Python 开发者都应该知道的7种好用工具(效率翻倍)

    Python 从一种小的开源语言开始,到现在,它已经成为开发者很受欢迎的编程语言之一. 今天我将给大家分享 7 种对所有 Python 开发人员都感觉很有趣.有用的工具,相信它们在你的工作中会经常出现,提升工作效率. 1.The F*ck 当我们忘记了某些软件包在这里或那里,The F*ck优雅地解决了这个问题.你所要做的只是键入"Fuck",然后它会告诉你出了什么问题. 它是该列表上很受欢迎的项目,并且将继续存在.安装方法如下: # mac brew install thefuck

  • Python性能分析工具py-spy原理用法解析

    Py-Spy介绍 引用官方的介绍: Py-Spy是Python程序的抽样分析器. 它允许您可视化查看Python程序在哪些地方花了更多时间,整个监控方式无需重新启动程序或以任何方式修改工程代码. Py-Spy的开销非常低:它是用Rust编写的,速度与编译的Python程序不在同一个进程中运行. 这意味着Py-Spy可以安全地用于生成生产环境中的Python应用调优分析. github:https://github.com/benfred/py-spy 安装 pip install py-spy

  • 几个提升Python运行效率的方法之间的对比

    在我看来,python社区分为了三个流派,分别是python 2.x组织,3.x组织和PyPy组织.这个分类基本上可以归根于类库的兼容性和速度.这篇文章将聚焦于一些通用代码的优化技巧以及编译成C后性能的显著提升,当然我也会给出三大主要python流派运行时间.我的目的不是为了证明一个比另一个强,只是为了让你知道如何在不同的环境下使用这些具体例子作比较. 使用生成器 一个普遍被忽略的内存优化是生成器的使用.生成器让我们创建一个函数一次只返回一条记录,而不是一次返回所有的记录,如果你正在使用pyth

  • Python性能分析工具pyinstrument提高代码效率

    目录 安装 简单的使用 分析 Flask 代码 分析 Django 代码 分析异步代码 工作原理 最后的话 天下武功,唯快不破. 编程也不例外,你的代码跑的快,你能快速找出代码慢的原因,你的码功就高. 安装 pip install pyinstrument 简单的使用 在程序的开始,启动 pyinstrument 的 Profiler,结束时关闭 Profiler 并打印分析结果如下: from pyinstrument import Profiler profiler = Profiler()

  • Python性能分析工具Profile使用实例

    这篇文章主要介绍了Python性能分析工具Profile使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序

  • cProfile Python性能分析工具使用详解

    前言 Python自带了几个性能分析的模块:profile.cProfile和hotshot,使用方法基本都差不多,无非模块是纯Python还是用C写的.本文介绍cProfile. 例子 import time def func1(): sum = 0 for i in range(1000000): sum += i def func2(): time.sleep(10) func1() func2() 运行 python -m cProfile del.py 运行结果 结果分析 执行了6个函

  • .NET Visual Studio 代码性能分析工具

    下面通过图文并茂的方式给大家介绍下,具体内容如下: 软件开发中的性能优化对程序员来说是一个非常重要的问题.一个小问题可能成为一个大的系统的瓶颈.但是对于程序员来说,通过自身去优化代码是十分困难的.幸运的是,有一些非常棒的工具可以帮助程序员进行代码分析和性能测试,从而大大简化程序员进行代码性能优化的过程.MSDN杂志2011年7月份曾发布主题为".NET代码分析工具和技术"的那一期,让广大程序员收获颇丰.四年过去之后,这些工具又进一步做出了很多改进,同时也出现了更多的选择.本文对当前主流

  • Java CPU性能分析工具代码实例

    这篇文章主要介绍了Java CPU性能分析工具代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 背景 有处理过生产问题的同学基本都能遇到系统忽然缓慢,CPU突然飙升,甚至整个应用请求不可用.当出现这种情况下,在不影响数据准确性的前提下,我们应该尽快导出jstack和内存信息,然后重启系统,尽快回复系统的可用性,避免用户体验过差.本文针对CPU飙升问题,提供该问题的排查思路,从而能够快速定位到某线程甚至某快代码导致CPU飙升,从而提供处理该

  • .NET  Visual Studio 代码性能分析工具

    下面通过图文并茂的方式给大家介绍下,具体内容如下: 软件开发中的性能优化对程序员来说是一个非常重要的问题.一个小问题可能成为一个大的系统的瓶颈.但是对于程序员来说,通过自身去优化代码是十分困难的.幸运的是,有一些非常棒的工具可以帮助程序员进行代码分析和性能测试,从而大大简化程序员进行代码性能优化的过程.MSDN杂志2011年7月份曾发布主题为".NET代码分析工具和技术"的那一期,让广大程序员收获颇丰.四年过去之后,这些工具又进一步做出了很多改进,同时也出现了更多的选择.本文对当前主流

  • PHP调试及性能分析工具Xdebug详解

    程序开发过程中,一般用得最多的调试方法就是用echo.print_r().var_dump().printf()等将语句打印出来.对PHP脚本的执行效率,通常是脚本执行时间.对数据库SQL的效率,通常是数据库Query时间,但这样并不能真正定位和分析脚本执行和数据库查询的瓶颈所在?对此,有一个叫Xdebug(www.xdebug.org)的PHP程序调试器(即一个Debug工具),可以用来跟踪,调试和分析PHP程序的运行状况. 一.以windows平台对此模块的安装做简单的介绍: 1. 下载PH

  • php轻量级的性能分析工具xhprof的安装使用

    一.前言 有用的东西还是记录下来吧,也方便以后的查询:这次记录一下xhprof的安装使用: xhprof是facebook开源出来的一个php轻量级的性能分析工具,跟Xdebug类似,但性能开销更低, 还可以用在生产环境中,也可以由程序开 关来控制是否进行profile. 二.安装 wget http://pecl.php.net/get/xhprof-0.9.3.tgz tar zxf xhprof-0.9.3.tgz cd xhprof-0.9.3/extension /usr/bin/ph

  • PHP性能分析工具XHProf安装使用教程

    HProf是facebook开源出来的一个php轻量级的性能分析工具,跟Xdebug类似,但性能开销更低,还可以用在生产环境中,也可以由程序开关来控制是否进行profile.基于浏览 器的性能分析用户界面能更容易查看,或是与同行们分享成果.也能绘制调用关系图.在数据收集阶段,它记录调用次数的追踪和包容性的指标弧在动态callgraph的一个程序. 它独有的数据计算的报告/后处理阶段.在数据收集时,XHProfd通过检测循环来处理递归的函数调用,并通过给递归调用中每个深度的调用一个有用的命名来避开

随机推荐