Python的collections模块真的很好用

collections是实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。为了让大家更好的认识,本文详细总结collections的相关知识,一起来学习吧!

collections模块:实现了特定目标的容器,以提供Python标准内建容器 dict、list、set、tuple 的替代选择。

Counter:字典的子类,提供了可哈希对象的计数功能。

defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认值。

OrderedDict:字典的子类,保留了他们被添加的顺序。

namedtuple:创建命名元组子类的工厂函数。

deque:类似列表容器,实现了在两端快速添加(append)和弹出(pop)。

ChainMap:类似字典的容器类,将多个映射集合到一个视图里面。

Counter

Counter是一个dict子类,主要是用来对你访问的对象的频率进行计数。

>>> import collections
>>> # 统计字符出现的次数
... collections.Counter('hello world')
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})
>>> # 统计单词个数
... collections.Counter('hello world hello lucy'.split())
Counter({'hello': 2, 'world': 1, 'lucy': 1})

常用方法:

elements():返回一个迭代器,每个元素重复计算的个数,如果一个元素的计数小于1,就会被忽略。

most_common([n]):返回一个列表,提供n个访问频率最高的元素和计数

subtract([iterable-or-mapping]):从迭代对象中减去元素,输入输出可以是0或者负数

update([iterable-or-mapping]):从迭代对象计数元素或者从另一个 映射对象 (或计数器) 添加。

>>> c = collections.Counter('hello world hello lucy'.split())
>>> c
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 获取指定对象的访问次数,也可以使用get方法
... c['hello']
2
>>> # 查看元素
... list(c.elements())
['hello', 'hello', 'world', 'lucy']
>>> c1 = collections.Counter('hello world'.split())
>>> c2 = collections.Counter('hello lucy'.split())
>>> c1
Counter({'hello': 1, 'world': 1})
>>> c2
Counter({'hello': 1, 'lucy': 1})
>>> # 追加对象,+或者c1.update(c2)
... c1+c2
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 减少对象,-或者c1.subtract(c2)
... c1-c2
Counter({'world': 1})
>>> # 清除
... c.clear()
>>> c
Counter()

defaultdict

返回一个新的类似字典的对象。defaultdict 是内置 dict 类的子类。

class collections.defaultdict([default_factory[, ...]])

>>> d = collections.defaultdict()
>>> d
defaultdict(None, {})
>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})

例子

defaultdict的一个典型用法是使用其中一种内置类型(如str、int、list或dict等)作为默认工厂,这些内置类型在没有参数调用时返回空类型。

>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})
>>> e['hello']
''
>>> e
defaultdict(<class 'str'>, {'hello': ''})
>>> # 普通字典调用不存在的键时,报错
... e1 = {}
>>> e1['hello']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'hello'

使用 int 作为 default_factory

>>> fruit = collections.defaultdict(int)
>>> fruit['apple'] = 2
>>> fruit
defaultdict(<class 'int'>, {'apple': 2})
>>> fruit['banana'] # 没有对象时,返回0
0
>>> fruit
defaultdict(<class 'int'>, {'apple': 2, 'banana': 0})

使用 list 作为 default_factory

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = collections.defaultdict(list)
>>> for k,v in s:
...   d[k].append(v)
...
>>> d
defaultdict(<class 'list'>, {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})
>>> d.items()
dict_items([('yellow', [1, 3]), ('blue', [2, 4]), ('red', [1])])
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

使用 dict 作为 default_factory

```python
>>> nums = collections.defaultdict(dict)
>>> nums[1] = {'one':1}
>>> nums
defaultdict(, {1: {'one': 1}})
>>> nums[2]
{}
>>> nums
defaultdict(, {1: {'one': 1}, 2: {}})

使用 set 作为 default_factory

```python
>>> types = collections.defaultdict(set)
>>> types['手机'].add('华为')
>>> types['手机'].add('小米')
>>> types['显示器'].add('AOC')
>>> types
defaultdict(<class 'set'>, {'手机': {'华为', '小米'}, '显示器': {'AOC'}})

## OrderedDict

Python字典中的键的顺序是任意的,它们不受添加的顺序的控制。

collections.OrderedDict 类提供了保留他们添加顺序的字典对象。

```python
>>> o = collections.OrderedDict()
>>> o['k1'] = 'v1'
>>> o['k3'] = 'v3'
>>> o['k2'] = 'v2'
>>> o
OrderedDict([('k1', 'v1'), ('k3', 'v3'), ('k2', 'v2')])

如果在已经存在的 key 上添加新的值,将会保留原来的 key 的位置,然后覆盖 value 值。

```python
>>> o['k1'] = 666
>>> o
OrderedDict([('k1', 666), ('k3', 'v3'), ('k2', 'v2')])
>>> dict(o)
{'k1': 666, 'k3': 'v3', 'k2': 'v2'}

## namedtuple

三种定义命名元组的方法:第一个参数是命名元组的构造器(如下的:Person1,Person2,Person3)

```python
>>> P1 = collections.namedtuple('Person1',['name','age','height'])
>>> P2 = collections.namedtuple('Person2','name,age,height')
>>> P3 = collections.namedtuple('Person3','name age height')

实例化命名元组

```python
>>> lucy = P1('lucy',23,180)
>>> lucy
Person1(name='lucy', age=23, height=180)
>>> jack = P2('jack',20,190)
>>> jack
Person2(name='jack', age=20, height=190)
>>> lucy.name # 直接通过 实例名.属性 来调用
'lucy'
>>> lucy.age
23

deque

collections.deque 返回一个新的双向队列对象,从左到右初始化(用方法 append()),从 iterable(迭代对象)数据创建。如果 iterable 没有指定,新队列为空。

collections.deque 队列支持线程安全,对于从两端添加(append)或者弹出(pop),复杂度O(1)。

虽然 list 对象也支持类似操作,但是这里优化了定长操作(pop(0)、insert(0,v))的开销。

如果 maxlen 没有指定或者是 None ,deque 可以增长到任意长度。否则,deque 就限定到指定最大长度。一旦限定长度的 deque 满了,当新项加入时,同样数量的项就从另一端弹出。

支持的方法:

append(x):添加x到右端。

appendleft(x):添加x到左端。

clear():清除所有元素,长度变为0。

copy():创建一份浅拷贝。

count(x):计算队列中个数等于x的元素。

extend(iterable):在队列右侧添加iterable中的元素。

extendleft(iterable):在队列左侧添加iterable中的元素,注:在左侧添加时,iterable参数的顺序将会反过来添加。

index(x[,start[,stop]]):返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,抛出 ValueError 。

insert(i,x):在位置 i 插入 x 。注:如果插入会导致一个限长deque超出长度 maxlen 的话,就抛出一个 IndexError 。

pop():移除最右侧的元素。

popleft():移除最左侧的元素。

remove(value):移去找到的第一个 value。没有抛出ValueError。

reverse():将deque逆序排列。返回 None 。

maxlen:队列的最大长度,没有限定则为None。

>>> d = collections.deque(maxlen=10)
>>> d
deque([], maxlen=10)
>>> d.extend('python')
>>> [i.upper() for i in d]
['P', 'Y', 'T', 'H', 'O', 'N']
>>> d.append('e')
>>> d.appendleft('f')
>>> d.appendleft('g')
>>> d.appendleft('h')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'e'], maxlen=10)
>>> d.appendleft('i')
>>> d
deque(['i', 'h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n'], maxlen=10)
>>> d.append('m')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'm'], maxlen=10)

## ChainMap

问题背景是我们有多个字典或者映射,想把它们合并成为一个单独的映射,有人说可以用update进行合并,这样做的问题就是新建了一个数据结构以致于当我们对原来的字典进行更改的时候不会同步。如果想建立一个同步的查询方法,可以使用 ChainMap。

可以用来合并两个或者更多个字典,当查询的时候,从前往后依次查询。简单使用:

```python
>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> combined1 = collections.ChainMap(d1,d2)
>>> combined2 = collections.ChainMap(d2,d1)
>>> combined1
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> combined2
ChainMap({'orange': 2, 'apple': 3, 'pike': 1}, {'apple': 1, 'banana': 2})
>>> for k,v in combined1.items():
...   print(k,v)
...
orange 2
apple 1
pike 1
banana 2
>>> for k,v in combined2.items():
...   print(k,v)
...
apple 3
banana 2
orange 2
pike 1
</code></pre>

有一个注意点就是当对ChainMap进行修改的时候总是只会对第一个字典进行修改,如果第一个字典不存在该键,会添加。

<pre><code class="language-python line-numbers">>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> c = collections.ChainMap(d1,d2)
>>> c
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['apple']
1
>>> c['apple'] = 2
>>> c
ChainMap({'apple': 2, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['pike']
1
>>> c['pike'] = 3
>>> c
ChainMap({'apple': 2, 'banana': 2, 'pike': 3}, {'orange': 2, 'apple': 3, 'pike': 1})

从原理上面讲,ChainMap 实际上是把放入的字典存储在一个队列中,当进行字典的增加删除等操作只会在第一个字典上进行,当进行查找的时候会依次查找,new_child() 方法实质上是在列表的第一个元素前放入一个字典,默认是{},而 parents 是去掉了列表开头的元素。

```python
>>> a = collections.ChainMap()
>>> a['x'] = 1
>>> a
ChainMap({'x': 1})
>>> b = a.new_child()
>>> b
ChainMap({}, {'x': 1})
>>> b['x'] = 2
>>> b
ChainMap({'x': 2}, {'x': 1})
>>> b['y'] = 3
>>> b
ChainMap({'x': 2, 'y': 3}, {'x': 1})
>>> a
ChainMap({'x': 1})
>>> c = a.new_child()
>>> c
ChainMap({}, {'x': 1})
>>> c['x'] = 1
>>> c['y'] = 1
>>> c
ChainMap({'x': 1, 'y': 1}, {'x': 1})
>>> d = c.parents
>>> d
ChainMap({'x': 1})
>>> d is a
False
>>> d == a
True

>>> a = {'x':1,'z':3}
>>> b = {'y':2,'z':4}
>>> c = collections.ChainMap(a,b)
>>> c
ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4})
>>> c.maps
[{'x': 1, 'z': 3}, {'y': 2, 'z': 4}]
>>> c.parents
ChainMap({'y': 2, 'z': 4})
>>> c.parents.maps
[{'y': 2, 'z': 4}]
>>> c.parents.parents
ChainMap({})
>>> c.parents.parents.parents
ChainMap({})

到此这篇关于Python的collections模块真的很好用的文章就介绍到这了,更多相关Python的collections模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 简介Python的collections模块中defaultdict类型的用法

    defaultdict 主要用来需要对 value 做初始化的情形.对于字典来说,key 必须是 hashable,immutable,unique 的数据,而 value 可以是任意的数据类型.如果 value 是 list,dict 等数据类型,在使用之前必须初始化为空,有些情况需要把 value 初始化为特殊值,比如 0 或者 ''. from collections import defaultdict person_by_age = defaultdict(list) for pers

  • Python中Collections模块的Counter容器类使用教程

    1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict.set.list.tuple以外的一些特殊的容器类型,分别是: OrderedDict类:排序字典,是字典的子类.引入自2.7. namedtuple()函数:命名元组,是一个工厂函数.引入自2.6. Counter类:为hashable对象计数,是字典的子类.引入自2.7. deque:双向队列.引入自2.4. defaultdict:使用工厂函数创建字典,使不用考虑缺失的字典键.引

  • 简单掌握Python的Collections模块中counter结构的用法

    counter 是一种特殊的字典,主要方便用来计数,key 是要计数的 item,value 保存的是个数. from collections import Counter >>> c = Counter('hello,world') Counter({'l': 3, 'o': 2, 'e': 1, 'd': 1, 'h': 1, ',': 1, 'r': 1, 'w': 1}) 初始化可以传入三种类型的参数:字典,其他 iterable 的数据类型,还有命名的参数对. | __init

  • Python collections模块实例讲解

    collections模块基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型: 1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类2.deque: 双端队列,可以快速的从另外一侧追加和推出对象3.Counter: 计数器,主要用来计数4.OrderedDict: 有序字典5.defaultdict: 带有默认值的字典 n

  • Python的collections模块中的OrderedDict有序字典

    如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序. d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for letter in d: print letter 输出: a b c 如果初始化的时候同时传入多个参数,它们的顺序是随机的,不会按照位置顺序存储. >>> d = OrderedDict(a=1, b=2, c=3) OrderedDict([('a', 1), ('c', 3), ('b', 2)]) 除了和

  • 详解Python的collections模块中的deque双端队列结构

    deque 是 double-ended queue的缩写,类似于 list,不过提供了在两端插入和删除的操作. appendleft 在列表左侧插入 popleft 弹出列表左侧的值 extendleft 在左侧扩展 例如: queue = deque() # append values to wait for processing queue.appendleft("first") queue.appendleft("second") queue.appendl

  • Python的collections模块真的很好用

    collections是实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择.为了让大家更好的认识,本文详细总结collections的相关知识,一起来学习吧! collections模块:实现了特定目标的容器,以提供Python标准内建容器 dict.list.set.tuple 的替代选择. Counter:字典的子类,提供了可哈希对象的计数功能. defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认

  • Python中collections模块的基本使用教程

    前言 之前认识了python基本的数据类型和数据结构,现在认识一个高级的:Collections,一个模块主要用来干嘛,有哪些类可以使用,看__init__.py就知道 '''This module implements specialized container datatypes providing alternatives to Python's general purpose built-in containers, dict, list, set, and tuple. * named

  • Python的collections模块中namedtuple结构使用示例

    namedtuple 就是命名的 tuple,比较像 C 语言中 struct.一般情况下的 tuple 是 (item1, item2, item3,...),所有的 item 都只能按照 index 访问,没有明确的称呼,而 namedtuple 就是事先把这些 item 命名,以后可以方便访问. from collections import namedtuple # 初始化需要两个参数,第一个是 name,第二个参数是所有 item 名字的列表. coordinate = namedtu

  • Python使用Paramiko模块编写脚本进行远程服务器操作

    简介: paramiko是python(2.2或更高)的模块,遵循SSH2协议实现了安全(加密和认证)连接远程机器. 安装所需软件包: http://ftp.dlitz.net/pub/dlitz/crypto/pycrypto/pycrypto-2.5.tar.gz http://www.lag.net/paramiko/download/paramiko-1.7.7.1.tar.gz tar zxvf pycrypto-2.5.tar.gz cd pycrypto-2.5 python se

  • 你真的了解Python的random模块吗?

    random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的.而计算机中的随机函数是按照一定算法模拟产生的,其结果是确定的,是可见的.我们可以这样认为这个可预见的结果其出现的概率是100%.所以用计算机随机函数所产生的"随机数"并不随机,是伪随机数. 计算机的伪随机数是由随机种子根据一定的计算方法计算出来的数值.所以,只要

随机推荐