pytorch中Schedule与warmup_steps的用法说明

1. lr_scheduler相关

lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)

其中args.warmup_steps可以认为是耐心系数

num_train_optimization_steps为模型参数的总更新次数

一般来说:

num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)

Schedule用来调节学习率,拿线性变换调整来说,下面代码中,step是当前迭代次数。

    def lr_lambda(self, step):
        # 线性变换,返回的是某个数值x,然后返回到类LambdaLR中,最终返回old_lr*x
        if step < self.warmup_steps: # 增大学习率
            return float(step) / float(max(1, self.warmup_steps))
        # 减小学习率
        return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))

在实际运行中,lr_scheduler.step()先将lr初始化为0. 在第一次参数更新时,此时step=1,lr由0变为初始值initial_lr;在第二次更新时,step=2,上面代码中生成某个实数alpha,新的lr=initial_lr *alpha;在第三次更新时,新的lr是在initial_lr基础上生成,即新的lr=initial_lr *alpha。

其中warmup_steps可以认为是lr调整的耐心系数。

由于有warmup_steps存在,lr先慢慢增加,超过warmup_steps时,lr再慢慢减小。

在实际中,由于训练刚开始时,训练数据计算出的grad可能与期望方向相反,所以此时采用较小的lr,随着迭代次数增加,lr线性增大,增长率为1/warmup_steps;迭代次数等于warmup_steps时,学习率为初始设定的学习率;迭代次数超过warmup_steps时,学习率逐步衰减,衰减率为1/(total-warmup_steps),再进行微调。

2. gradient_accumulation_steps相关

gradient_accumulation_steps通过累计梯度来解决本地显存不足问题。

假设原来的batch_size=6,样本总量为24,gradient_accumulation_steps=2

那么参数更新次数=24/6=4

现在,减小batch_size=6/2=3,参数更新次数不变=24/3/2=4

在梯度反传时,每gradient_accumulation_steps次进行一次梯度更新,之前照常利用loss.backward()计算梯度。

补充:pytorch学习笔记 -optimizer.step()和scheduler.step()

optimizer.step()和scheduler.step()的区别

optimizer.step()通常用在每个mini-batch之中,而scheduler.step()通常用在epoch里面,但是不绝对,可以根据具体的需求来做。只有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。

通常我们有

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
scheduler = lr_scheduler.StepLR(optimizer, step_size = 100, gamma = 0.1)
model = net.train(model, loss_function, optimizer, scheduler, num_epochs = 100)

在scheduler的step_size表示scheduler.step()每调用step_size次,对应的学习率就会按照策略调整一次。

所以如果scheduler.step()是放在mini-batch里面,那么step_size指的是经过这么多次迭代,学习率改变一次。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch的Optimizer训练工具的实现

    torch.optim 是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 使用 torch.optim,必须构造一个 optimizer 对象.这个对象能保存当前的参数状态并且基于计算梯度更新参数. 例如: optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9) optimizer = optim.Adam([var1, var2], lr = 0.00

  • PyTorch中model.zero_grad()和optimizer.zero_grad()用法

    废话不多说,直接上代码吧~ model.zero_grad() optimizer.zero_grad() 首先,这两种方式都是把模型中参数的梯度设为0 当optimizer = optim.Optimizer(net.parameters())时,二者等效,其中Optimizer可以是Adam.SGD等优化器 def zero_grad(self): """Sets gradients of all model parameters to zero.""

  • Pytorch 中的optimizer使用说明

    与优化函数相关的部分在torch.optim模块中,其中包含了大部分现在已有的流行的优化方法. 如何使用Optimizer 要想使用optimizer,需要创建一个optimizer 对象,这个对象会保存当前状态,并根据梯度更新参数. 怎样构造Optimizer 要构造一个Optimizer,需要使用一个用来包含所有参数(Tensor形式)的iterable,把相关参数(如learning rate.weight decay等)装进去. 注意,如果想要使用.cuda()方法来将model移到GP

  • pytorch中Schedule与warmup_steps的用法说明

    1. lr_scheduler相关 lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps) 其中args.warmup_steps可以认为是耐心系数 num_train_optimization_steps为模型参数的总更新次数 一般来说: num_train_optimization_steps = int(total

  • pytorch中的 .view()函数的用法介绍

    目录 一.普通用法(手动调整size) 二.特殊用法:参数-1(自动调整size) 一.普通用法 (手动调整size) view()相当于reshape.resize,重新调整Tensor的形状. import torch a1 = torch.arange(0,16) print(a1) # tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15]) a2 = a1.view(8, 2) a3 = a1.vi

  • Pytorch中的学习率衰减及其用法详解

    Pytorch 学习率衰减及其用法 学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy. Pytorch中有两种学习率调整(衰减)方法: 使用库函数进行调整: 手动调整. 1. 使用库函数进行调整: Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现.pytorch提供的学习率调整策略分为三大类,分别是: (1)有序调整

  • pytorch中with torch.no_grad():的用法实例

    目录 1.关于with 2.关于withtorch.no_grad(): 附:pytorch使用模型测试使用withtorch.no_grad(): 总结 1.关于with with是python中上下文管理器,简单理解,当要进行固定的进入,返回操作时,可以将对应需要的操作,放在with所需要的语句中.比如文件的写入(需要打开关闭文件)等. 以下为一个文件写入使用with的例子. with open (filename,'w') as sh: sh.write("#!/bin/bash\n&qu

  • pytorch 中autograd.grad()函数的用法说明

    我们在用神经网络求解PDE时, 经常要用到输出值对输入变量(不是Weights和Biases)求导: 在训练WGAN-GP 时, 也会用到网络对输入变量的求导. 以上两种需求, 均可以用pytorch 中的autograd.grad() 函数实现. autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False

  • 基于PyTorch中view的用法说明

    相当于numpy中resize()的功能,但是用法可能不太一样. 我的理解是: 把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其他维度的tensor. 比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2,3,4,5,6],因为它们排成一维向量都是6个元素,所以只要view后面的参数一致,得到的结果都是一样的. 比如, a=torch.Tensor([[[1,2,3],[4,5,6]]]) b=tor

  • 踩坑:pytorch中eval模式下结果远差于train模式介绍

    首先,eval模式和train模式得到不同的结果是正常的.我的模型中,eval模式和train模式不同之处在于Batch Normalization和Dropout.Dropout比较简单,在train时会丢弃一部分连接,在eval时则不会.Batch Normalization,在train时不仅使用了当前batch的均值和方差,也使用了历史batch统计上的均值和方差,并做一个加权平均(momentum参数).在test时,由于此时batchsize不一定一致,因此不再使用当前batch的均

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

随机推荐