使用Python实现二终端网络可靠度

在网络可靠性中,一种较为经典且在实践中更为常用的可靠度计算便是二终端可靠度,即给定网络拓扑结构与边可靠度(假定节点完全可靠),计算网络中指定的两个节点之间的连通可靠度。

在此,笔者依据最小路集思想给出此方法的python代码实现,该代码可以依据给定的输入矩阵、节点序号等设定值算出两节点间的连通可靠度。

逻辑代码与测试用例如下:

import itertools
def min_path_sets(init_matrix,index_start,index_end):
    import re
    num_point = init_matrix.shape[0]
    min_path_list = []
    for i in range(num_point-1):
        temp = init_matrix**(i+1)
        item = expand(temp[index_start-1,index_end-1])
        list_given = re.sub('[ *123456789]',"",str(item)).split("+")

        #删除指定阶数下,路径长度不等于阶数的路
        index_to_delete = []
        for j in range(len(list_given)):
            if len(list_given[j])!=(i+1) or list_given[j]=='0':
                index_to_delete.append(j)
        for counter, index in enumerate(index_to_delete):
            index = index - counter
            list_given.pop(index)

        min_path_list.extend(list_given)
    return min_path_list

def str_de_duplication(pstr):
    a = ''
    for i in range(len(pstr)):
        if pstr[i] not in a:
            a+=pstr[i]
    return a

def product_symbol(pstr,my_dict):
    import numpy as np
    value_list = []
    for i in pstr:
        value_list.append(my_dict[i])
    return np.prod(value_list)

def generate_label(path_sets,my_dict):
    import numpy as np
    all_result = []
    for exp_num in range(len(path_sets)):
        item_Combination = list(itertools.combinations(path_sets, exp_num+1))
        item_list = list(map(lambda x: str_de_duplication("".join(x)),item_Combination))
        value_list = list(map(lambda x: product_symbol(x,my_dict),item_list))
        all_result.append(np.sum(value_list)*(-1)**(exp_num))
    return np.sum(all_result)

def Matrix_label(init_matrix,my_dict,index_start,index_end):
    path_sets = min_path_sets(init_matrix,index_start,index_end)
    pro_value = generate_label(path_sets,my_dict)
    return pro_value

from sympy import *
from sympy.abc import A,B,C,D,E,F
index_start = 2
index_end = 1
data = Matrix([[0,A,B],
               [A,0,C],
               [B,C,0]])
my_dict = {'A':0.8,
           'B':0.9,
           'C':0.9}

Matrix_label(data,my_dict,index_start,index_end)

在前部分,主要定义了几个函数以便求出最小路集以及利用容斥原理计算二终端可靠度,最终外层函数为Matrix_label(data,my_dict,index_start,index_end):

参数解释:

  • data:矩阵形式的数据,表征整个网络的拓扑结构和边可靠度,其中每一个矩阵元素要么为0,要么预设的字母如“A、B、C”等,每个字母取值为0到1(不包含0但包括1),元素为0表示对应行号与列号的节点之间无边相连,元素为字母如“A”表示对应行号与列号的节点之间以可靠度为A的概率相连;
  • my_dict:字典形式的数据,指定每一个用到的字母所表示的概率值,如{'A':0.8,'B':0.9,'C':0.9},特别指出网络中节点之间的连通概率可以相异;
  • index_start:二终端节点中的起始点序号;
  • index_end:二终端节点中的终止点序号;

以上就是使用Python实现二终端网络可靠度的详细内容,更多关于二终端网络可靠度 的资料请关注我们其它相关文章!

(0)

相关推荐

  • 使用Python实现二终端网络可靠度

    在网络可靠性中,一种较为经典且在实践中更为常用的可靠度计算便是二终端可靠度,即给定网络拓扑结构与边可靠度(假定节点完全可靠),计算网络中指定的两个节点之间的连通可靠度. 在此,笔者依据最小路集思想给出此方法的python代码实现,该代码可以依据给定的输入矩阵.节点序号等设定值算出两节点间的连通可靠度. 逻辑代码与测试用例如下: import itertools def min_path_sets(init_matrix,index_start,index_end): import re num_

  • 利用Python实现在同一网络中的本地文件共享方法

    本文利用Python3启动简单的HTTP服务器,以实现在同一网络中共享本地文件. 启动HTTP服务器 打开终端,转入目标文件所在文件夹,键入以下命令: $ cd /Users/zero/Documents/localFiles # python -m http.server <port number> $ sudo python3 -m http.server 8092 Serving HTTP on 0.0.0.0 port 8092 (http://0.0.0.0:8092/) ... 生

  • 只用50行Python代码爬取网络美女高清图片

    一.技术路线 requests:网页请求 BeautifulSoup:解析html网页 re:正则表达式,提取html网页信息 os:保存文件 import re import requests import os from bs4 import BeautifulSoup 二.获取网页信息 常规操作,获取网页信息的固定格式,返回的字符串格式的网页内容,其中headers参数可模拟人为的操作,'欺骗'网站不被发现 def getHtml(url): #固定格式,获取html内容 headers

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • Python实现二维有序数组查找的方法

    本文实例讲述了Python实现二维有序数组查找的方法.分享给大家供大家参考,具体如下: 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 这题目属于比较简单但又很不容易想到的,问了两个同学,大家一时都没有想出来怎么解决比较快.第一反应都是二分查找.对于每一行进行二分查找,然后查找过程可以把某些列排除掉,这是大家都能想到的基本的思路. 比较好的另一种思路是,首先选取数组右上角

  • Python实现二维数组按照某行或列排序的方法【numpy lexsort】

    本文实例讲述了Python实现二维数组按照某行或列排序的方法.分享给大家供大家参考,具体如下: lexsort支持对数组按指定行或列的顺序排序:是间接排序,lexsort不修改原数组,返回索引. (对应lexsort 一维数组的是argsort a.argsort()这么使用就可以:argsort也不修改原数组, 返回索引) 默认按最后一行元素有小到大排序, 返回最后一行元素排序后索引所在位置. 设数组a, 返回的索引ind,ind返回的是一维数组 对于一维数组, a[ind]就是排序后的数组.

  • Python的“二维”字典 (two-dimension dictionary)定义与实现方法

    本文实例讲述了Python的"二维"字典 (two-dimension dictionary)定义与实现方法.分享给大家供大家参考,具体如下: Python 中的dict可以实现迅速查找.那么有没有像数组有二维数组一样,有二维的字典呢?比如我需要对两个关键词进行查找的时候.2D dict 可以通过 dict_2d = {'a': {'a': 1, 'b': 3}, 'b': {'a': 6}} 来建立,并通过 dict_2d['a']['b'] 来访问.但是添加一个新的 "k

  • python基于socket实现网络广播的方法

    本文实例讲述了python基于socket实现网络广播的方法.分享给大家供大家参考.具体实现方法如下: import socket, sys dest = ('<broadcast>', 51423) s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST,1) s.sendto("Hi", dest) print &qu

  • python生成二维码的实例详解

    python生成二维码的实例详解 版本相关 操作系统:Mac OS X EI Caption Python版本:2.7 IDE:Sublime Text 3 依赖库 Python生成二维码需要的依赖库为PIL和QRcode. 坑爹的是,百度了好久都没有找到PIL,不知道是什么时候改名了,还是其他原因,pillow就是传说中的PIL. 安装命令:sudo pip install pillow.sudo pip install qrcode 验证是否安装成功,使用命令from PIL import

  • Python获取二维矩阵每列最大值的方法

    因为做项目中间有一个很小的环节需要这个功能,所以就写了一个简单的小函数,下面是具体实现: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 ''' def get_max_value(martix): ''' 得到矩阵中每一列最大的值 ''' res_list=[] for j in range(len(martix[0])): one_list=[] for i in range(len(martix)): one_list.ap

随机推荐