Pytorch 使用 nii数据做输入数据的操作

使用pix2pix-gan做医学图像合成的时候,如果把nii数据转成png格式会损失很多信息,以为png格式图像的灰度值有256阶,因此直接使用nii的医学图像做输入会更好一点。

但是Pythorch中的Dataloader是不能直接读取nii图像的,因此加一个CreateNiiDataset的类。

先来了解一下pytorch中读取数据的主要途径——Dataset类。在自己构建数据层时都要基于这个类,类似于C++中的虚基类。

自己构建的数据层包含三个部分

class Dataset(object):
"""An abstract class representing a Dataset.
All other datasets should subclass it. All subclasses should override
``__len__``, that provides the size of the dataset, and ``__getitem__``,
supporting integer indexing in range from 0 to len(self) exclusive.
"""
def __getitem__(self, index):
 raise NotImplementedError
def __len__(self):
 raise NotImplementedError
def __add__(self, other):
 return ConcatDataset([self, other])

根据自己的需要编写CreateNiiDataset子类:

因为我是基于https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

做pix2pix-gan的实验,数据包含两个部分mr 和 ct,不需要标签,因此上面的 def getitem(self, index):中不需要index这个参数了,类似地,根据需要,加入自己的参数,去掉不需要的参数。

class CreateNiiDataset(Dataset):
 def __init__(self, opt, transform = None, target_transform = None):
  self.path1 = opt.dataroot # parameter passing
  self.A = 'MR'
  self.B = 'CT'
  lines = os.listdir(os.path.join(self.path1, self.A))
  lines.sort()
  imgs = []
  for line in lines:
   imgs.append(line)
  self.imgs = imgs
  self.transform = transform
  self.target_transform = target_transform

 def crop(self, image, crop_size):
  shp = image.shape
  scl = [int((shp[0] - crop_size[0]) / 2), int((shp[1] - crop_size[1]) / 2)]
  image_crop = image[scl[0]:scl[0] + crop_size[0], scl[1]:scl[1] + crop_size[1]]
  return image_crop

 def __getitem__(self, item):
  file = self.imgs[item]
  img1 = sitk.ReadImage(os.path.join(self.path1, self.A, file))
  img2 = sitk.ReadImage(os.path.join(self.path1, self.B, file))
  data1 = sitk.GetArrayFromImage(img1)
  data2 = sitk.GetArrayFromImage(img2)

  if data1.shape[0] != 256:
   data1 = self.crop(data1, [256, 256])
   data2 = self.crop(data2, [256, 256])
  if self.transform is not None:
   data1 = self.transform(data1)
   data2 = self.transform(data2)

  if np.min(data1)<0:
   data1 = (data1 - np.min(data1))/(np.max(data1)-np.min(data1))

  if np.min(data2)<0:
   #data2 = data2 - np.min(data2)
   data2 = (data2 - np.min(data2))/(np.max(data2)-np.min(data2))

  data = {}
  data1 = data1[np.newaxis, np.newaxis, :, :]
  data1_tensor = torch.from_numpy(np.concatenate([data1,data1,data1], 1))
  data1_tensor = data1_tensor.type(torch.FloatTensor)
  data['A'] = data1_tensor # should be a tensor in Float Tensor Type

  data2 = data2[np.newaxis, np.newaxis, :, :]
  data2_tensor = torch.from_numpy(np.concatenate([data2,data2,data2], 1))
  data2_tensor = data2_tensor.type(torch.FloatTensor)
  data['B'] = data2_tensor # should be a tensor in Float Tensor Type
  data['A_paths'] = [os.path.join(self.path1, self.A, file)] # should be a list, with path inside
  data['B_paths'] = [os.path.join(self.path1, self.B, file)]
  return data

 def load_data(self):
  return self

 def __len__(self):
  return len(self.imgs)

注意:最后输出的data是一个字典,里面有四个keys=[‘A',‘B',‘A_paths',‘B_paths'], 一定要注意数据要转成FloatTensor。

其次是data[‘A_paths'] 接收的值是一个list,一定要加[ ] 扩起来,要不然测试存图的时候会有问题,找这个问题找了好久才发现。

然后直接在train.py的主函数里面把数据加载那行改掉就好了

data_loader = CreateNiiDataset(opt)
dataset = data_loader.load_data()

Over!

补充知识:nii格式图像存为npy格式

我就废话不多说了,大家还是直接看代码吧!

import nibabel as nib
import os
import numpy as np

img_path = '/home/lei/train/img/'
seg_path = '/home/lei/train/seg/'
saveimg_path = '/home/lei/train/npy_img/'
saveseg_path = '/home/lei/train/npy_seg/'

img_names = os.listdir(img_path)
seg_names = os.listdir(seg_path)

for img_name in img_names:
 print(img_name)
 img = nib.load(img_path + img_name).get_data() #载入
 img = np.array(img)
 np.save(saveimg_path + str(img_name).split('.')[0] + '.npy', img) #保存

for seg_name in seg_names:
 print(seg_name)
 seg = nib.load(seg_path + seg_name).get_data()
 seg = np.array(seg)
 np.save(saveseg_path + str(seg_name).split('.')[0] + '.npy

以上这篇Pytorch 使用 nii数据做输入数据的操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式

    传统使用opencv自带的swapaxes进行转换,然后使用pytorch的from_numpy转为tensor 例如: img = img.swapaxes(1,2).swapaxes(0,1) 但是有一个常用的图像增广模块albumentations模块中的img_to_tensor进行直接转换 注意:我这里使用unsqueeze是为了验证模型的输出,如果使用pytorch的dataset则不需要使用这个操作 补充知识:pytorch只用中要注意通道问题 cv读进来的是BGR图像,通道是hc

  • Pytorch中Tensor与各种图像格式的相互转化详解

    前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片.而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL.numpy.Tensor)是一个在调试中比较重要的问题. 本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题.以下代码经过测试都可以在Pytorch-0.4.0或0.3.0版本直接使用. 对py

  • Pytorch中.new()的作用详解

    一.作用 创建一个新的Tensor,该Tensor的type和device都和原有Tensor一致,且无内容. 二.使用方法 如果随机定义一个大小的Tensor,则新的Tensor有两种创建方法,如下: inputs = torch.randn(m, n) new_inputs = inputs.new() new_inputs = torch.Tensor.new(inputs) 三.具体代码 import torch rectangle_height = 1 rectangle_width

  • Pytorch 使用 nii数据做输入数据的操作

    使用pix2pix-gan做医学图像合成的时候,如果把nii数据转成png格式会损失很多信息,以为png格式图像的灰度值有256阶,因此直接使用nii的医学图像做输入会更好一点. 但是Pythorch中的Dataloader是不能直接读取nii图像的,因此加一个CreateNiiDataset的类. 先来了解一下pytorch中读取数据的主要途径--Dataset类.在自己构建数据层时都要基于这个类,类似于C++中的虚基类. 自己构建的数据层包含三个部分 class Dataset(object

  • Python cookbook(数据结构与算法)同时对数据做转换和换算处理操作示例

    本文实例讲述了Python同时对数据做转换和换算处理操作.分享给大家供大家参考,具体如下: 问题:我们需要调用一个换算函数(例如sum().min().max()),但是首先需对数据做转换或者筛选处理 解决方案:非常优雅的方法---在函数参数中使用生成器表达式 例如: # 计算平方和 nums=[1,2,3,4,5] s1=sum((x*x for x in nums)) s2=sum(x*x for x in nums) #更优雅的用法 s3=sum([x*x for x in nums])

  • PyTorch读取Cifar数据集并显示图片的实例讲解

    首先了解一下需要的几个类所在的package from torchvision import transforms, datasets as ds from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np #transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等. #DataLoader读入的数据类型是PIL.Image

  • 基于Python对数据shape的常见操作详解

    这一阵在用python做DRL建模的时候,尤其是在配合使用tensorflow的时候,加上tensorflow是先搭框架再跑数据,所以调试起来很不方便,经常遇到输入数据或者中间数据shape的类型不统一,导致一些op老是报错.而且由于水平菜,所以一些常用的数据shape转换操作也经常百度了还是忘,所以想再整理一下. 一.数据的基本属性 求一组数据的长度 a = [1,2,3,4,5,6,7,8,9,10,11,12] print(len(a)) print(np.size(a)) 求一组数据的s

  • pytorch读取图像数据转成opencv格式实例

    pytorch读取图像数据转成opencv格式方法:先转成numpy通用的格式,再将其转换成opencv格式. pytorch读取的数据使用loaddata这类函数实现.pytorch网络输入图像的格式为(C, H, W),就是(通道数,高,宽)而numpy中图像的格式为(H,W,C). 那就将其通道调换一下.用到函数transpose. 转换方法如下 例如A 的格式为(c,h,w) 那么经过 A = A.transpose(1,2,0) 后就变成了(h,w,c)了 然后用语句 B= cv2.c

  • 使用Nibabel库对nii格式图像的读写操作

    因为后期主要的研究方向是医学图像处理,而现有手头的大部分数据都是nii格式或者是hdr,img格式的数据,所以首先第一步我们需要解决图像的读写问题. 其实使用OpenCV也可以方便的进行图像读取,但是这里暂时只学习Nibabel这个库,后面有时间的话再研究OpenCV在python中的使用. Nibabel的安装 可以通过pip进行安装 pip install nibabel 简单的图像读取和存储操作 import os import nibabel as nib # 读取图像 path='C:

  • Python数据报表之Excel操作模块用法分析

    本文实例讲述了Python数据报表之Excel操作模块用法.分享给大家供大家参考,具体如下: 一 点睛 Excel是当今最流行的电子表格处理软件,支持丰富的计算函数及图表,在系统运营方面广泛用于运营数据报表,比如业务质量.资源利用.安全扫描等报表,同时也是应用系统常见的文件导出格式,以便数据使用人员做进一步加工处理.利用Python操作Excel的模块XlsxWriter(https://xlsxwriter.readthedocs.org),可以操作多个工作表的文字.数字.公式.图表等. 二

  • MySQL 表数据的导入导出操作示例

    本文实例讲述了MySQL 表数据的导入导出操作.分享给大家供大家参考,具体如下: 数据导出 1.  使用 SELECT ...INTO OUTFILE ...命令来导出数据,具体语法如下. mysql> SELECT * FROM tablename INTO OUTFILE 'target_file' [option]; 其中 option 参数可以是以下选项: FIELDS TEMINATED BY 'string' (字符分断符) FIELDS [OPTIONALLY] ENCLOSED

  • JS表单验证插件之数据与逻辑分离操作实例分析【策略模式】

    本文实例讲述了JS表单验证插件之数据与逻辑分离操作.分享给大家供大家参考,具体如下: 之前已经写过一个表单验证插件了,为什么还会重复造轮子呢?第一个问题是代码结构比较乱,虽然通过原型继承的写法将处理分层,但业务逻辑和数据结构混杂在一起,导致第二个问题--可扩展性和灵活性差. 认真分析表单验证的过程,可以分为两步:怎么验证和如何验证.怎么验证是数据层面的问题,如何验证是业务逻辑层面的问题. 点击:这里 查看源码 策略模式将对象和规则区分 如何让算法(数据层)和对象(逻辑层)分开来,使得算法可以独立

  • hive中将string数据转为bigint的操作

    使用 CAST 函数将 STRING 转为 BIGINT: SELECT CAST('00321' AS BIGINT) FROM table; As a BIGINT it will show on the screen and in delimited text files as 321. 参考:Hive - Converting a string to bigint 补充知识:hive中bigint和varchar字段做关联,关联数据错误的解决方法 把bigint和varchar都隐式转换

随机推荐