深入分析python中整型不会溢出问题

本次分析基于 CPython 解释器,python3.x版本

在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数。在python3后,统一使用了长整型。这也是吸引科研人员的一部分了,适合大数据运算,不会溢出,也不会有其他语言那样还分短整型,整型,长整型...因此python就降低其他行业的学习门槛了。

那么,不溢出的整型实现上是否可行呢?

不溢出的整型的可行性

尽管在 C 语言中,整型所表示的大小是有范围的,但是 python 代码是保存到文本文件中的,也就是说,python代码中并不是一下子就转化成 C 语言的整型的,我们需要重新定义一种数据结构来表示和存储我们新的“整型”。

怎么来存储呢,既然我们要表示任意大小,那就得用动态的可变长的结构,显然,数组的形式能够胜任:

[longintrepr.h]
struct _longobject {
PyObject_VAR_HEAD
int *ob_digit;
};

长整型的保存形式

长整型在python内部是用一个 int 数组( ob_digit[n] )保存值的. 待存储的数值的低位信息放于低位下标, 高位信息放于高下标.比如要保存 123456789 较大的数字,但我们的int只能保存3位(假设):

ob_digit[0] = 789;
ob_digit[1] = 456;
ob_digit[2] = 123;

低索引保存的是地位,那么每个 int 元素保存多大的数合适?有同学会认为数组中每个int存放它的上限(2^31 - 1),这样表示大数时,数组长度更短,更省空间。但是,空间确实是更省了,但操作会代码麻烦,比方大数做乘积操作,由于元素之间存在乘法溢出问题,又得多考虑一种溢出的情况。

怎么来改进呢?在长整型的 ob_digit 中元素理论上可以保存的int类型有 32 位,但是我们只保存 15 位,这样元素之间的乘积就可以只用 int 类型保存即可, 结果做位移操作就能得到尾部和进位 carry 了,定义位移长度为 15:

#define PyLong_SHIFT 15
#define PyLong_BASE ((digit)1 << PyLong_SHIFT)
#define PyLong_MASK ((digit)(PyLong_BASE - 1))

PyLong_MASK 也就是 0b111111111111111 ,通过与它做位运算 与 的操作就能得到低位数。

有了这种存放方式,在内存空间允许的情况下,我们就可以存放任意大小的数字了。

长整型的运算

加法与乘法运算都可以使用我们小学的竖式计算方法,例如对于加法运算:

ob_digit[2] ob_digit[1] ob_digit[0]
加数a 23 934 543
加数b + 454 632
结果z 24 389 175

为方便理解,表格展示的是数组中每个元素保存的是 3 位十进制数,计算结果保存在变量z中,那么 z 的数组最多只要 size_a + 1 的空间(两个加数中数组较大的元素个数 + 1),因此对于加法运算,可以这样来处理:

[longobject.c]
static PyLongObject * x_add(PyLongObject *a, PyLongObject *b) {
  int size_a = len(a), size_b = len(b);
  PyLongObject *z;
  int i;
  int carry = 0; // 进位

  // 确保a是两个加数中较大的一个
  if (size_a < size_b) {
    // 交换两个加数
    swap(a, b);
    swap(&size_a, &size_b);
  }

  z = _PyLong_New(size_a + 1); // 申请一个能容纳size_a+1个元素的长整型对象
  for (i = 0; i < size_b; ++i) {
    carry += a->ob_digit[i] + b->ob_digit[i];
    z->ob_digit[i] = carry & PyLong_MASK;  // 掩码
    carry >>= PyLong_SHIFT;         // 移除低15位, 得到进位
  }
  for (; i < size_a; ++i) {          // 单独处理a中高位数字
    carry += a->ob_digit[i];
    z->ob_digit[i] = carry & PyLong_MASK;
    carry >>= PyLong_SHIFT;
  }
  z->ob_digit[i] = carry;
  return long_normalize(z);          // 整理元素个数

}

这部分的过程就是,先将两个加数中长度较长的作为第一个加数,再为用于保存结果的 z 申请空间,两个加数从数组从低位向高位计算,处理结果的进位,将结果的低 15 位赋值给 z 相应的位置。最后的 long_normalize(z) 是一个整理函数,因为我们 z 申请了 a_size + 1 的空间,但不意味着 z 会全部用到,因此这个函数会做一些调整,去掉多余的空间,数组长度调整至正确的数量,若不方便理解,附录将给出更利于理解的python代码。

竖式计算不是按个位十位来计算的吗,为什么这边用整个元素?

竖式计算方法适用与任何进制的数字,我们可以这样来理解,这是一个 32768 (2的15次方) 进制的,那么就可以把数组索引为 0 的元素当做是 “个位”,索引 1 的元素当做是 “十位”。

乘法运算

乘法运算一样可以用竖式的计算方式,两个乘数相乘,存放结果的 z 的元素个数为 size_a + size_b 即可:

操作 ob_digit[2] ob_digit[1] ob_digit[0]
乘数a 23 934 543
乘数b * 454 632
结果z 15 126 631 176
10 866 282 522
结果z 10 881 409 153 176

这里需要主意的是,当乘数 b 用索引 i 的元素进行计算时,结果 z 也是从 i 索引开始保存。先创建 z 并初始化为 0,这 z 上做累加操作,加法运算则可以利用前面的 x_add 函数:

// 为方便理解,会与cpython中源码部分稍有不同
static PyLongObject * x_mul(PyLongObject *a, PyLongObject *b)
{
  int size_a = len(a), size_b = len(b);
  PyLongObject *z = _PyLong_New(size_a + size_b);
  memset(z->ob_digit, 0, len(z) * sizeof(int)); // z 的数组清 0

  for (i = 0; i < size_b; ++i) {
    int carry = 0;     // 用一个int保存元素之间的乘法结果
    int f = b->ob_digit[i]; // 当前乘数b的元素

    // 创建一个临时变量,保存当前元素的计算结果,用于累加
    PyLongObject *temp = _PyLong_New(size_a + size_b);
    memset(temp->ob_digit, 0, len(temp) * sizeof(int)); // temp 的数组清 0

    int pz = i; // 存放到临时变量的低位

    for (j = 0; j < size_a; ++j) {
      carry = f * a[j] + carry;
      temp[pz] = carry & PyLong_MASK; // 取低15位
      carry = carry >> PyLong_SHIFT; // 保留进位
      pz ++;
    }
    if (carry){   // 处理进位
      carry += temp[pz];
      temp[pz] = carry & PyLong_MASK;
      carry = carry >> PyLong_SHIFT;
    }
    if (carry){
      temp[pz] += carry & PyLong_MASK;
    }
    temp = long_normalize(temp);
    z = x_add(z, temp);
  }

  return z

}

这大致就是乘法的处理过程,竖式乘法的复杂度是n^2,当数字非常大的时候(数组元素个数超过 70 个)时,python会选择性能更好,更高效的 Karatsuba multiplication 乘法运算方式,这种的算法复杂度是 3nlog3≈3n1.585,当然这种计算方法已经不是今天讨论的内容了。有兴趣的小伙伴可以去了解下。

总结

要想支持任意大小的整数运算,首先要找到适合存放整数的方式,本篇介绍了用 int 数组来存放,当然也可以用字符串来存储。找到合适的数据结构后,要重新定义整型的所有运算操作,本篇虽然只介绍了加法和乘法的处理过程,但其实还需要做很多的工作诸如减法,除法,位运算,取模,取余等。

python代码以文本形式存放,因此最后,还需要一个将字符串形式的数字转换成这种整型结构:

[longobject.c]
PyObject * PyLong_FromString(const char *str, char **pend, int base)
{
}

这部分不是本篇的重点,有兴趣的同学可以看看这个转换的过程。

参考:https://github.com/python/cpython/blob/master/Objects/longobject.c

附录

# 例子中的表格中,数组元素最多存放3位整数,因此这边设置1000
# 对应的取低位与取高位也就变成对 1000 取模和取余操作
PyLong_SHIFT = 1000
PyLong_MASK = 999

# 以15位长度的二进制
# PyLong_SHIFT = 15
# PyLong_MASK = (1 << 15) - 1

def long_normalize(num):
  """
  去掉多余的空间,调整数组的到正确的长度
  eg: [176, 631, 0, 0] ==> [176, 631]
  :param num:
  :return:
  """
  end = len(num)
  while end >= 1:
    if num[end - 1] != 0:
      break
    end -= 1

  num = num[:end]
  return num

def x_add(a, b):
  size_a = len(a)
  size_b = len(b)
  carry = 0

  # 确保 a 是两个加数较大的,较大指的是元素的个数
  if size_a < size_b:
    size_a, size_b = size_b, size_a
    a, b = b, a

  z = [0] * (size_a + 1)
  i = 0
  while i < size_b:
    carry += a[i] + b[i]
    z[i] = carry % PyLong_SHIFT
    carry //= PyLong_SHIFT
    i += 1

  while i < size_a:
    carry += a[i]
    z[i] = carry % PyLong_SHIFT
    carry //= PyLong_SHIFT
    i += 1
  z[i] = carry

  # 去掉多余的空间,数组长度调整至正确的数量
  z = long_normalize(z)

  return z

def x_mul(a, b):
  size_a = len(a)
  size_b = len(b)
  z = [0] * (size_a + size_b)

  for i in range(size_b):
    carry = 0
    f = b[i]

    # 创建一个临时变量
    temp = [0] * (size_a + size_b)
    pz = i
    for j in range(size_a):
      carry += f * a[j]
      temp[pz] = carry % PyLong_SHIFT
      carry //= PyLong_SHIFT
      pz += 1

    if carry:  # 处理进位
      carry += temp[pz]
      temp[pz] = carry % PyLong_SHIFT
      carry //= PyLong_SHIFT
      pz += 1

    if carry:
      temp[pz] += carry % PyLong_SHIFT
    temp = long_normalize(temp)
    z = x_add(z, temp)  # 累加

  return z

a = [543, 934, 23]
b = [632, 454]
print(x_add(a, b))
print(x_mul(a, b))
(0)

相关推荐

  • 浅析Python 中整型对象存储的位置

    在 Python 整型对象所存储的位置是不同的, 有一些是一直存储在某个存储里面, 而其它的, 则在使用时开辟出空间. 说这句话的理由, 可以看看如下代码: a = 5 b = 5 a is b # True a = 500 b = 500 a is b # False 由上面的代码可知, 整型 5 是一直存在的, 而整型 500 不是一直存在的. 那么有哪些整数是一直存储的呢? a, b, c = 0, 0, 0 while a is b: i += 1 a, b = int(str(i)),

  • python3中int(整型)的使用教程

    Python3支持三种不同的数值类型: 整型(int)--通常被称为是整型或整数,可以是正整数或负整数,不带小数点.Python3整型是没有限制大小的,可以当做long类型使用, 但实际上由于机器内存的有限,我们使用的整数是不可能无限大的. 浮点型(float)--浮点型数字由整数部分和小数部分组成,浮点型也可以使用科学计数法表示(2.5e2 = 2.5 x 102 = 250) 复数(complex)--复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示,复数的

  • 实例介绍Python中整型

    Python中有以下几个基本的数据类型: 整数 int 字符串 str 浮点数 float 集合 set 列表 list 元组 tuple 字典 dict 布尔类型 bool 日期 date 其中可变数据类型有:list(列表).dict(字典).set(集合): 不可变数据类型有:int(整型).float(浮点型).str(字符串).bool(布尔类型).tuple(元组): 什么可变对象及不可变对象? 不可变对象:就是说该对象所指向的内存中的值不能被改变.当改变某个变量时候,由于其所指的值

  • 用Python将IP地址在整型和字符串之间轻松转换

    前言 大家应该都有所体会,对于字符串型的IP存入数据库中,实在是个即浪费空间又浪费性能的家伙,所以可爱的人们想出来将IP转换为整型存储.MySQL中存在INET_ATON() .INET_NTOA()函数进行IP整型和字符串之间的转换,那么Python中存在什么方法可以实现MySQL中INET_ATON() .INET_NTOA()的功能呢?方法肯定是有的- 方法如下 # 导入相关模块包 import socket import struct # 将IP从字符串转为整型 >>> int(

  • 浅谈Python 中整型对象的存储问题

    在 Python 整型对象所存储的位置是不同的, 有一些是一直存储在某个存储里面, 而其它的, 则在使用时开辟出空间. 说这句话的理由, 可以看看如下代码: a = 5 b = 5 a is b # True a = 500 b = 500 a is b # False 由上面的代码可知, 整型 5 是一直存在的, 而整型 500 不是一直存在的. 那么有哪些整数是一直存储的呢? a, b, c = 0, 0, 0 while a is b: i += 1 a, b = int(str(i)),

  • Python整型运算之布尔型、标准整型、长整型操作示例

    本文实例讲述了Python整型运算之布尔型.标准整型.长整型操作.分享给大家供大家参考,具体如下: #coding=utf8 def integerType(): ''''' 布尔型: 该值的取值范围只有两个值:True(1).False(0) ''' Tbool=True Fbool=False print "The True is stand for %d" %(Tbool) print "The False is stand for %d" %(Fbool)

  • 深入分析python中整型不会溢出问题

    本次分析基于 CPython 解释器,python3.x版本 在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数.在python3后,统一使用了长整型.这也是吸引科研人员的一部分了,适合大数据运算,不会溢出,也不会有其他语言那样还分短整型,整型,长整型...因此python就降低其他行业的学习门槛了. 那么,不溢出的整型实现上是否可行呢? 不溢出的整型的可行性 尽管在 C 语言中,整型所表示的大小是有范围的,但是 python 代码是保

  • 深入理解Python虚拟机中整型(int)的实现原理及源码剖析

    目录 数据结构 深入分析 PyLongObject 字段的语意 小整数池 整数的加法实现 总结 数据结构 在 cpython 内部的 int 类型的实现数据结构如下所示: typedef struct _longobject PyLongObject; struct _longobject { PyObject_VAR_HEAD digit ob_digit[1]; }; #define PyObject_VAR_HEAD PyVarObject ob_base; typedef struct

  • python中关于数据类型的学习笔记

    数据类型是每种编程语言必备属性,只有给数据赋予明确的数据类型,计算机才能对数据进行处理运算,因此,正确使用数据类型是十分必要的,不同的语言,数据类型类似,但具体表示方法有所不同,以下是Python编程常用的数据类型: 1. 数字类型 Python数字类型主要包括int(整型).long(长整型)和float(浮点型),但是在Python3中就不再有long类型了. int(整型) 在32位机器上,整数的位数是32位,取值范围是-231~231-1,即-2147483648~214748364:在

  • Python中的单继承与多继承实例分析

    本文实例讲述了Python中的单继承与多继承.分享给大家供大家参考,具体如下: 单继承 一.介绍 Python 同样支持类的继承,如果一种语言不支持继承,类就没有什么意义.派生类的定义如下所示: class DerivedClassName(BaseClassName1): <statement-1> . . . <statement-N> 需要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类

  • 解决python中set与dict的无序问题

    每个熟悉python的人都知道,python提供给了我们各种各样原生的数据结构,如list.tuple.set.dict等等.这些形形色色的数据结构为我们程序猿提供了业务支持.但是要用好这些对象,可就要理解这些结构的特点. 比如简单的区分:可变与不可变.有序与无序. 那么本文就想和大家分享一下,这个无序中的细节. 在开始之前,本蟒蛇严重申明,集合和字典是无序的!!集合和字典是无序的!!集合和字典是无序的!!不要看完本蛇说完,然后得到了什么奇奇怪怪的结论!本文基于python3.6进行讲解,什么你

  • C++中的整型

    目录 1.整型 2.short.int.long和long long 3.位与字节 4.初始化 5.无符号类型 1.整型 整型即整数,与小数对应. 许多语言只能表示一种整型(如Python),而在C++当中根据整数的范围提供了好几种不同的整型. C++的基本整型有char.short.int.long,在C++ 11标准中,新增了long long.在部分编译器当中不支持long long,而支持__int64.稍后会有单独的文章对此进行解释和补充说明. 其中char类型有一些特殊属性,通常被用

随机推荐