opencv python 2D直方图的示例代码
Histograms - 3 : 2D Histograms
我们已经计算并绘制了一维直方图,因为我们只考虑一个特征,即像素的灰度强度值.但在二维直方图中,需要考虑两个特征,通常,它用于查找颜色直方图,其中两个要素是每个像素的色调和饱和度值.
OpenCV中的2D直方图
使用函数cv.calcHist()
, 对于颜色直方图,我们需要将图像从BGR转换为HSV。 (请记住,对于1D直方图,我们从BGR转换为灰度)。对于2D直方图,其参数将修改如下:
- channels = [0,1]:因为我们需要同时处理H(色调Hue)和S(饱和度Saturation).
- bins = [180,256]:180对应H,256对应S.
- range = [0,180,0,256]:色调值介于0到180之间,饱和度介于0到256之间.
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img.jpg') hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
Numpy中的2D直方图
np.histogram2d()
. (注意,对于1D直方图,我们使用np.histogram()
)
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])
第一个参数是H平面,第二个是S平面,第三个是每个bins的数量,第四个是它们的范围
绘制2D直方图
方法 - 1:使用cv.imshow()
我们得到的结果是一个大小为180x256的二维数组. 因此我们可以像使用cv.imshow()函数一样正常显示它们. 它将是一个灰度图像,它不会告诉你什么颜色,除非你知道不同颜色的色调.
方法-2:使用Matplotlib
我们可以使用matplotlib.pyplot.imshow()
函数绘制具有不同颜色图的2D直方图. 它让我们更好地了解不同的像素密度, 但是,除非你知道不同颜色的色调值,否则这也不会让我们知道第一眼看到的是什么颜色. 它简单而且更好.
代码:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img6.png') hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) hist = cv2.calcHist([hsv], [0,1], None, [180,256], [0,180,0,256]) plt.imshow(hist, interpolation='nearest') plt.show()
在直方图中,你可以看到H=100和S=200附近的一些高值,它对应于天空的蓝色.同样,在H=25和S=100附近也可以看到另一个峰值,它对应着宫殿的黄色.
方法-3:OpenCV样本风格
在Opencv-Python2样本中有一个用于颜色直方图的示例代码(samples/python/color_histogram.py).如果您运行代码,您可以看到直方图显示相应的颜色,或者简单地输出一个颜色编码的直方图.它的结果非常好(尽管您需要添加一些额外的行).
在这段代码中,作者在HSV中创建了一个彩色地图,然后将其转换为BGR,生成的直方图图像与此颜色图相乘,他还使用一些预处理步骤来移除小的孤立像素,从而形成一个良好的直方图.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python opencv 直方图反向投影的方法
本文介绍了python opencv 直方图反向投影的方法,分享给大家,具体如下: 目标: 直方图反向投影 原理: 反向投影可以用来做图像分割,寻找感兴趣区间.它会输出与输入图像大小相同的图像,每一个像素值代表了输入图像上对应点属于目标对象的概率,简言之,输出图像中像素值越高的点越可能代表想要查找的目标.直方图投影经常与camshift(追踪算法)算法一起使用. 算法实现的方法,首先要为包含我们感兴趣区域的图像建立直方图(样例要找一片草坪,其他的不要).被查找的对象最好是占据整个图像(图像里全是
-
详解python OpenCV学习笔记之直方图均衡化
本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_histogram_equalization.html 考虑一个图像,其像素值仅限制在特定的值范围内.例如,更明亮的图像将使所有像素都限制在高值中.但是一个好的图像会有来自图像的所有区域的像素.所以你需要把这个直方图拉伸到两端(如下图所给出的),这就是直方图均衡的作用(用简单的话说).这通常会改善图像的
-
Python OpenCV处理图像之图像直方图和反向投影
本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下 当我们想比较两张图片相似度的时候,可以使用这一节提到的技术 直方图对比 反向投影 关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码: 0x01. 绘制直方图 import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.
-
python OpenCV学习笔记之绘制直方图的方法
本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直
-
Python OpenCV 直方图的计算与显示的方法示例
本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了.这里直接介绍方法. 计算并显示直方图 与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist. cv2.calcHist的原型为: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回his
-
python OpenCV学习笔记实现二维直方图
本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d_histogram.html 在前一篇文章中,我们计算并绘制了一维的直方图.它被称为一维,因为我们只考虑一个特性,即像素的灰度强度值.但是在二维直方图中,你可以考虑两个特征.通常它用于寻找颜色直方图,其中两个特征是每个像素的色调和饱和度值. 有一个python样例(samples/python/c
-
Java+opencv3.2.0之直方图均衡详解
直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法. 直方图均衡化的步骤: 1.计算输入图像的直方图H 2.进行直方图归一化,使直方图组距的和为255 3.计算直方图积分 4.采用H'作为查询表:dst(x,y)=H'(src(x,y))进行图像变换 函数:Imgproc.equalizeHist(Mat src, Mat dst) 参数说明: src:源图像 dst:运算结果图像 示例代码: public static void main(String[] args) { Sys
-
python OpenCV学习笔记直方图反向投影的实现
本文介绍了python OpenCV学习笔记直方图反向投影的实现,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dc/df6/tutorial_py_histogram_backprojection.html 它用于图像分割或寻找图像中感兴趣的对象.简单地说,它创建一个与我们的输入图像相同大小(但单通道)的图像,其中每个像素对应于属于我们对象的像素的概率.输出图像将使我们感兴趣的对象比其余部分更白. 该怎么做呢?我们创建一个图像的直方图,其中包
-
opencv python 2D直方图的示例代码
Histograms - 3 : 2D Histograms 我们已经计算并绘制了一维直方图,因为我们只考虑一个特征,即像素的灰度强度值.但在二维直方图中,需要考虑两个特征,通常,它用于查找颜色直方图,其中两个要素是每个像素的色调和饱和度值. OpenCV中的2D直方图 使用函数cv.calcHist(), 对于颜色直方图,我们需要将图像从BGR转换为HSV. (请记住,对于1D直方图,我们从BGR转换为灰度).对于2D直方图,其参数将修改如下: channels = [0,1]:因为我们需要同
-
Python+Opencv实现数字识别的示例代码
一.什么是数字识别? 所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别? 对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较
-
Python+OpenCV实现角度测量的示例代码
本文介绍如何使用python语言实现角度测量,程序包括鼠标选点.直线斜率计算.角度计算三个子程序和一个主程序.最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示. 1.鼠标选点 # -*- coding: utf-8 -*- import cv2 path = "picture_mqa\\angle_measure.bmp" img = cv2.imread(path) pointsList = [] def mousePoints(event,x,y,f
-
opencv调整图像亮度对比度的示例代码
图像处理 图像变换就是找到一个函数,把原始图像矩阵经过函数处理后,转换为目标图像矩阵. 可以分为两种方式,即像素级别的变换和区域级别的变换 Point operators (pixel transforms) Neighborhood (area-based) operators 像素级别的变换就相当于\(p_{after}(i,j) = f(p_{before}(i,j))\),即变换后的每个像素值都与变换前的同位置的像素值有个函数映射关系. 对比度和亮度改变 线性变换 最常用的是线性变换.即
-
Opencv判断颜色相似的图片示例代码
问题描述 有一个项目,大体是要判断一下一篇文章内的配图突不突兀. 素材准备 所以就从网上随便找了4张图: 可以看出,前3张图片从颜色上.从阅读感受上,应该是相似的,而最后一张应该是不同的. 而当我们只对图片做缩放(为了跑得快),然后用bgr通道出直方图算相似度时: 却发现,只有第一张和第二张图片的相似度是大于0.5的,而第二.三张,以及第三.四张图片之间的相似度几乎都小于等于0.1. 思考方法 于是,经过思考后我觉得,判断两张图片在颜色上相不相似,其本质在于判断其直方图分布的形状相不相似,而不应
-
OpenCV+Python几何变换的实现示例
几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 1 缩放 使用cv2.resize()函数实现对图像的缩放,但要注意cv2.resize()函数内的dsize参数与原图像的行列属性是相反的,也就是:目标图像的行数是原始图像的列数,目标图像的列数是原始图像的行数. 下面举例说明cv2.resize()函数的用法: import cv2 img=cv2.imread('E:/python_opencv/tupian.jpg') rows,col
-
Python实现边缘提取的示例代码
目录 复习 一.边缘提取 1.什么是边缘 2.什么是边缘提取 二.Sobel算子 三.Canny边缘检测算法 1.算法步骤 2.高斯平滑 3.非极大值抑制 4.双阈值检测 四.相关代码 复习 (1)梯度: 梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模) (2)线性滤波 可以说是 图像处理 最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果 一.边缘提取 1.什么是边缘 图象
-
Python Flask基础教程示例代码
本文研究的主要是Python Flask基础教程,具体介绍如下. 安装:pip install flask即可 一个简单的Flask from flask import Flask #导入Flask app = Flask(__name__) #创建一个Flask实例 #设置路由,即url @app.route('/') #url对应的函数 def hello_world(): #返回的页面 return 'Hello World!' #这个不是作为模块导入的时候运行,比如这个文件为aa.py,
-
利用python生成照片墙的示例代码
PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了.其官方主页为:PIL. PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3.本文只使用了PIL那些最常用的特性与用法,主要参考自:http://www.effbot.org
-
Python无损压缩图片的示例代码
每个设计师.摄影师或有图片处理需求小编,都会面临批量高清大图的困扰. 因为高清大图放到网站上会严重拖慢加载速度,或是有的地方明确限制了图片大小,因此,为了完成工作,他们总是需要先把图片压缩,再上传. 当需要处理的图片多至十张.百张.千张,则严重影响工作效率.这时候,就可以交给Python啦! 只需要20行Python代码,就可以批量帮你无损压缩数张照片. ---1--- 前期工作 安装Python中现成的图片处理模块,然后将图片打包好导入,用循环的方式自动化处理图片就可以了! ---2--- 运
随机推荐
- PHP + plupload.js实现多图上传并显示进度条加删除实例代码
- Linux(Ubuntu)下Mysql5.6.28安装配置方法图文教程
- jquery插件开发之选项卡制作详解
- iOS微信支付交互图分析
- PHP调用wsdl文件类型的接口代码分享
- 强烈推荐:php.ini中文版(2)
- Nodejs中session的简单使用及通过session实现身份验证的方法
- PHP的PDO操作简单示例
- Hibernate环境搭建与配置方法(Hello world配置文件版)
- 为数据添加append,remove功能
- javascript读取Xml文件做一个二级联动菜单示例
- iis7.5 URL重写零基础入门介绍
- python使用xauth方式登录饭否网然后发消息
- Python利用多进程将大量数据放入有限内存的教程
- 用PHP实现的四则运算表达式计算实现代码
- Java Swing组件复选框JCheckBox用法示例
- 使用elementUI实现将图片上传到本地的示例
- JS判断数组里是否有重复元素的方法小结
- vue router 用户登陆功能的实例代码
- 详解VUE自定义组件中用.sync修饰符与v-model的区别