pandas.DataFrame.to_json按行转json的方法

最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法

to_json方法默认以列名为键,列内容为值,形成{col1:[v11,v21,v31…],col2:[v12,v22,v32],…}这种格式,但有时我们需要按行来转为json,形如这种格式[row1:{col1:v11,col2:v12,col3:v13…},row2:{col1:v21,col2:v22,col3:v23…}]

通过查找官网我们可以看到to_json方法有一个参数为orient,其参数说明如下:

orient : string
Series
default is ‘index'
allowed values are: {‘split','records','index'}
DataFrame
default is ‘columns'
allowed values are: {‘split','records','index','columns','values'}
The format of the JSON string
split : dict like {index -> [index], columns -> [columns], data -> [values]}
records : list like [{column -> value}, … , {column -> value}]
index : dict like {index -> {column -> value}}
columns : dict like {column -> {index -> value}}
values : just the values array
table : dict like {‘schema': {schema}, ‘data': {data}} describing the data, and the data component is like orient='records'.
Changed in version 0.20.0

大致意思为:

如果是Series转json,默认的orient是'index',orient可选参数有 {‘split','records','index'}

如果是DataFrame转json,默认的orient是'columns',orient可选参数有 {‘split','records','index','columns','values'}

json的格式如下

split,样式为 {index -> [index], columns -> [columns], data -> [values]}

records,样式为[{column -> value}, … , {column -> value}]

index ,样式为 {index -> {column -> value}}

columns,样式为 {index -> {column -> value}}

values,数组样式

table,样式为{‘schema': {schema}, ‘data': {data}},和records类似

看一下官网给的demo

df = pd.DataFrame([['a', 'b'], ['c', 'd']],
  index=['row 1', 'row 2'],
  columns=['col 1', 'col 2'])
###########
split
###########
df.to_json(orient='split')
>'{"columns":["col 1","col 2"],
 "index":["row 1","row 2"],
 "data":[["a","b"],["c","d"]]}'
###########
index
###########
df.to_json(orient='index')
>'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
###########
records
###########
df.to_json(orient='index')
>'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
###########
table
###########
df.to_json(orient='table')
>'{"schema": {"fields": [{"name": "index", "type": "string"},
  {"name": "col 1", "type": "string"},
  {"name": "col 2", "type": "string"}],
 "primaryKey": "index",
 "pandas_version": "0.20.0"},
 "data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
 {"index": "row 2", "col 1": "c", "col 2": "d"}]}'

主要参考官网API:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html

以上这篇pandas.DataFrame.to_json按行转json的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python基于pandas实现json格式转换成dataframe的方法

    本文实例讲述了Python基于pandas实现json格式转换成dataframe的方法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 import re import json from bs4 import BeautifulSoup import pandas as pd import requests import os from pandas.io.json import json_normalize class image_str

  • 对pandas处理json数据的方法详解

    今天展示一个利用pandas将json数据导入excel例子,主要利用的是pandas里的read_json函数将json数据转化为dataframe. 先拿出我要处理的json字符串: strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529

  • 解决Pandas to_json()中文乱码,转化为json数组的问题

    问题出现与解决 Pandas进行数据处理之后,假如想将其转化为json,会出现一个bug,就是中文文字是以乱码存储的,也就是\uXXXXXX的形式,翻了翻官网文档,查了源码的参数,(多谢网友提醒)需要设置js001 = df1.to_json(force_ascii=False),即可显示中文编码 以下是原文的额外内容,DataFrame 转化为json数组 于是决定自己写一个.首先用demojson的类库尝试了一下,不行,依旧编码问题.之后考虑python 原生的 json 应该有编码转换功能

  • pandas.DataFrame.to_json按行转json的方法

    最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法 to_json方法默认以列名为键,列内容为值,形成{col1:[v11,v21,v31-],col2:[v12,v22,v32],-}这种格式,但有时我们需要按行来转为json,形如这种格式[row1:{col1:v11,col2:v12,col3:v13-},row2:{col1:v21,col2:v22,col3:v23-}] 通过查找官网我们可以看到to_json方法有

  • python中pandas.DataFrame排除特定行方法示例

    前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • pandas dataframe添加表格框线输出的方法

    将dataframe添加到texttable里面,实现格式化输出. data=[{"name":"Amay","age":20,"result":80}, {"name":"Tom","age":32,"result":90}] df=pd.DataFrame(data,columns=['name','age','result']) print(

  • pandas 数据归一化以及行删除例程的方法

    如下所示: #coding:utf8 import pandas as pd import numpy as np from pandas import Series,DataFrame # 如果有id列,则需先删除id列再进行对应操作,最后再补上 # 统计的时候不需要用到id列,删除的时候需要考虑 # delete row def row_del(df, num_percent, label_len = 0): #print list(df.count(axis=1)) col_num = l

  • pandas.DataFrame选取/排除特定行的方法

    pandas.DataFrame选取特定行 使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. >>> df = pd.DataFrame([['GD', 'GX', 'FJ'], ['SD', 'SX', 'BJ'], ['HN', 'HB', 'AH'], ['HEN', 'HEN', 'HL

  • 一文教你向Pandas DataFrame添加行

    目录 示例1:向PandasDataFrame添加一行 示例2:向PandasDataFrame添加几行 总结 您可以使用df.loc()函数在Pandas DataFrame的末尾添加一行: #add row to end of DataFrame df.loc[len(df.index)] = [value1, value2, value3, ...] 您可以使用df.append()函数将现有 DataFrame 的几行附加到另一个 DataFrame 的末尾: #append rows

  • Python  处理 Pandas DataFrame 中的行和列

    目录 处理列 处理行 前言: 数据框是一种二维数据结构,即数据以表格的方式在行和列中对齐.我们可以对行/列执行基本操作,例如选择.删除.添加和重命名.在本文中,我们使用的是nba.csv文件. 处理列 为了处理列,我们对列执行基本操作,例如选择.删除.添加和重命名. 列选择:为了在 Pandas DataFrame 中选择一列,我们可以通过列名调用它们来访问这些列. # Import pandas package import pandas as pd # 定义包含员工数据的字典 data =

  • Pandas中map(),applymap(),apply()函数的使用方法

    目录 指定pandas对象作为NumPy函数的参数 元素的应用 行/列的应用 pandas.DataFrame,pandas.Series方法 Pandas对象方法的函数应用 适用于Series的每个元素:map(),apply() 应用于DataFrame的每个元素:applymap() 应用于DataFrame的每行和每列:apply() 应用于DataFrame的特定行/列元素 将函数应用于pandas对象(pandas.DataFrame,pandas.Series)时,根据所应用的函数

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

随机推荐