Python图像运算之图像灰度非线性变换详解

目录
  • 一.图像灰度非线性变换
  • 二.图像灰度对数变换
  • 三.图像灰度伽玛变换
  • 四.总结

一.图像灰度非线性变换

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
    for j in range(width):
        gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像灰度非线性变换的输出结果如图13-1所示:

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式(13-1)所示:

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如图13-2所示,它表示对数曲线下的灰度值变化情况,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。

在图13-3中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def log_plot(c):
    x = np.arange(0, 256, 0.01)
    y = c * np.log(1 + x)
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('对数变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim(0, 255), plt.ylim(0, 255)
    plt.show()

#对数变换
def log(c, img):
    output = c * np.log(1.0 + img)
    output = np.uint8(output + 0.5)
    return output

#读取原始图像
img = cv2.imread('dark.png')

#绘制对数变换曲线
log_plot(42)

#图像灰度对数变换
output = log(42, img)

#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-4表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

对应的对数函数曲线如图13-5所示,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式(13-2)所示:

当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。

当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。

当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def gamma_plot(c, v):
    x = np.arange(0, 256, 0.01)
    y = c*x**v
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('伽马变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim([0, 255]), plt.ylim([0, 255])
    plt.show()

#伽玛变换
def gamma(img, c, v):
    lut = np.zeros(256, dtype=np.float32)
    for i in range(256):
        lut[i] = c * i ** v
    output_img = cv2.LUT(img, lut) #像素灰度值的映射
    output_img = np.uint8(output_img+0.5)
    return output_img

#读取原始图像
img = cv2.imread('white.png')

#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)

#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)

#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-6表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

对应的伽马变换曲线如图13-7所示,其中x表示原始图像的灰度值,y表示伽马变换之后的目标灰度值。

四.总结

本文主要讲解图像灰度非线性变换,包括图像对数变换和伽马变换。其中,图像经过对数变换后,较暗区域的对比度将有所提升;而案例中经过伽玛变换处理的图像,整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。这些图像处理方法能有效提升图像的质量,为我们提供更好地感官效果。

到此这篇关于Python图像运算之图像灰度非线性变换详解的文章就介绍到这了,更多相关Python图像灰度变换内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python图像灰度变换及图像数组操作

    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象

  • Python图像运算之图像灰度线性变换详解

    目录 一.灰度线性变换 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 六.总结 一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度.灰度线性变换的计算公式如(12-1)所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像

  • Python图像运算之图像点运算与灰度化处理详解

    目录 一.图像点运算概念 二.图像灰度化处理 三.基于像素操作的图像灰度化处理 1.最大值灰度处理方法 2.平均灰度处理方法 3.加权平均灰度处理方法 四.总结 一.图像点运算概念 图像点运算(Point Operation)指对于一幅输入图像,将产生一幅输出图像,输出图像的每个像素点的灰度值由输入像素点决定.点运算实际上是灰度到灰度的映射过程,通过映射变换来达到增强或者减弱图像的灰度.还可以对图像进行求灰度直方图.线性变换.非线性变换以及图像骨架的提取.它与相邻的像素之间没有运算关系,是一种简

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python图像运算之图像灰度直方图对比详解

    目录 一.灰度增强直方图对比 二.灰度减弱直方图对比 三.图像反色直方图对比 四.图像对数变换直方图对比 五.图像阈值化处理直方图对比 六.总结 一.灰度增强直方图对比 图像灰度上移变换使用的表达式为: DB=DA+50 该算法将实现图像灰度值的上移,从而提升图像的亮度,结合直方图对比的实现代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as

  • Python图像运算之图像阈值化处理详解

    目录 一.图像阈值化 二.固定阈值化处理 1.二进制阈值化 2.反二进制阈值化 3.截断阈值化 4.阈值化为0 5.反阈值化为0 三.自适应阈值化处理 四.总结 一.图像阈值化 图像阈值化(Binarization)旨在剔除掉图像中一些低于或高于一定值的像素,从而提取图像中的物体,将图像的背景和噪声区分开来. 灰度化处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度.阈值化处理可以将图像中的像素划分为两类颜色,常见的阈值化算法如公式(1)所示: 当某个像素点的灰度Gray(i,j)小于

  • Python图像运算之图像掩膜直方图和HS直方图详解

    目录 一.图像掩膜直方图 二.图像HS直方图 三.直方图判断白天黑夜 四.总结 一.图像掩膜直方图 如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算.假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt import matplotl

  • OpenCV学习之图像加噪与滤波的实现详解

    目录 一.实验内容 二.实验环境和配置 三.实验原理及操作 1. 添加噪声 2.噪声二值化 3. 滤波处理 四.实验结果 2.椒盐噪声二值图与白噪声二值图 3.椒盐噪声处理图经处理后图像 4.白噪声处理图经处理后图像 五.结果分析 六.实验源码 一.实验内容 编写一Python程序,要求实现以下功能: 读入一幅图像. 使用两种以上的方法分别向图像中添加噪声. 输出一幅二值图像,图像中未加入噪声的区域为黑色,加入噪声的区域为白色. 使用三种滤波方法对上述添加了噪声的图像进行滤波处理. 输出滤波处理

  • Matlab中图像数字水印算法的原理与实现详解

    目录 一.背景意义 二.基本原理 三.算法介绍 3.1 数字水印嵌入 3.2 数字水印提取 四.程序实现 一.背景意义 数字水印技术作为信息隐藏技术的一个重要分支,是将信息(水印)隐藏于数字图像.视频.音频及文本文档等数字媒体中,从而实现隐秘传输.存储.标注.身份识别.版权保护和防篡改等目的. 随着 1996 年第一届信息隐藏国际学术研讨会的召开,数字水印技术的研究得到了迅速的发展,不少政府机构和研究部门加大了对其的研究力度,其中包括美国财政部.美国版权工作组.美国洛斯阿莫斯国家实验室.美国海陆

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • Python+OpenCV实现信用卡数字识别的方法详解

    目录 一.模板图像处理 二.信用卡图片预处理 一.模板图像处理 (1)灰度图.二值图转化 template = cv2.imread('C:/Users/bwy/Desktop/number.png') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) cv_show('template_gray', template_gray) # 形成二值图像,因为要做轮廓检测 ret, template_thresh = cv2.thre

随机推荐