python人工智能tensorflow函数np.random模块使用方法

目录
  • np.random模块常用的一些方法介绍
  • 例子
    • numpy.random.rand(d0, d1, …, dn):
    • numpy.random.randn(d0, d1, …, dn):
    • numpy.random.randint(low, high=None, size=None, dtype=‘I’):
    • numpy.random.uniform(low=0.0, high=1.0, size=None):
    • numpy.random.normal(loc=0.0, scale=1.0, size=None)
    • numpy.random.random(size=None)
    • numpy.random.choice(a, size=None, replace=True, p=None)

np.random模块常用的一些方法介绍

名称 作用
numpy.random.rand(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。
numpy.random.randn(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。
numpy.random.randint(low, high=None, size=None, dtype=‘I’) 生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。
numpy.random.uniform(low=0.0, high=1.0, size=None) 生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。
numpy.random.normal(loc=0.0, scale=1.0, size=None) 按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。
numpy.random.random(size=None) 生成[0.0, 1.0)之间的浮点数。
numpy.random.choice(a, size=None, replace=True, p=None) 从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。若a是整数,则a代表的数组是arange(a)。

例子

numpy.random.rand(d0, d1, …, dn):

生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。

import numpy as np
v1 = np.random.rand()
v2 = np.random.rand(3,4)
print(v1)
print(v2)

输出结果为:

0.618411110932038
[[0.35134062 0.55609186 0.4173297  0.85541691]
 [0.35144304 0.31204156 0.60196109 0.390464  ]
 [0.19186067 0.94570486 0.8637441  0.07028114]]

numpy.random.randn(d0, d1, …, dn):

生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。

import numpy as np
v1 = np.random.randn()
v2 = np.random.randn(3,4)
print(v1)
print(v2)

输出结果为:

0.47263651836701953
[[-0.23431214  0.97197099  0.52845269 -0.45246824]
 [-1.1266395  -1.60040653 -2.64602615 -0.19457032]
 [-0.520287   -1.0799122   0.08441667  0.34980224]]

numpy.random.randint(low, high=None, size=None, dtype=‘I’):

生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。

import numpy as np
v1 = np.random.randint(5)
v2 = np.random.randint(1,high = 5)
v3 = np.random.randint(1,high = 5,size = [3,4])
print(v1)
print(v2)
print(v3)

输出结果为:

2
3
[[1 1 3 1]
 [2 2 3 2]
 [3 4 2 1]]

numpy.random.uniform(low=0.0, high=1.0, size=None):

生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。

import numpy as np
v1 = np.random.uniform()
v2 = np.random.uniform(low = 0,high = 5)
v3 = np.random.uniform(low = 0,high = 5,size = [3,4])
print(v1)
print(v2)
print(v3)

输出结果为:

0.6925621763952164
3.0483936610544218
[[1.34959297 4.84117424 0.41277118 4.81392216]
 [2.91266734 0.87922181 3.39729422 3.34340092]
 [0.45158364 3.8129479  0.54246798 2.57192192]]

numpy.random.normal(loc=0.0, scale=1.0, size=None)

按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。

import numpy as np
v1 = np.random.normal()
v2 = np.random.normal(loc = 0,scale = 5)
v3 = np.random.normal(loc = 0,scale = 5,size = [3,4])
print(v1)
print(v2)
print(v3)

输出结果为:

0.7559391954091367
-3.359831771004067
[[  3.90821047   6.37757533   6.3813528    0.86219281]
 [ -3.61201084   4.05948053  -3.91172941  11.29050165]
 [ -8.60318633 -10.07090496  -4.86557867   7.98536182]]

numpy.random.random(size=None)

生成[0.0, 1.0)之间的浮点数。

import numpy as np
v1 = np.random.random()
v2 = np.random.random(size = [3,4])
print(v1)
print(v2)

输出结果为:

0.5930924941107145
[[0.41002067 0.28097163 0.8908558  0.16951515]
 [0.59730596 0.57475303 0.84174255 0.59633522]
 [0.63508879 0.44138737 0.6223043  0.61540997]]

numpy.random.choice(a, size=None, replace=True, p=None)

从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。若a是整数,则a代表的数组是arange(a)。

import numpy as np
v1 = np.random.choice(5)
v2 = np.random.choice(5,size = 5)
v3 = np.random.choice([1,2,3,4,5],size = 5)
v4 = np.random.choice([1,2,3,4,5],size = 5,p = [1,0,0,0,0])
v5 = np.random.choice([1,2,3,4,5],size = 5,replace = False)
print("v1:",v1)
print("v2:",v2)
print("v3:",v3)
print("v4:",v4)
print("v5:",v5)

输出结果为:

v1: 1
v2: [0 0 4 0 4]
v3: [3 2 3 1 1]
v4: [1 1 1 1 1]
v5: [4 2 3 5 1]

以上就是python人工智能tensorflow函数np.random模块使用方法的详细内容,更多关于tensorflow函数np.random模块的资料请关注我们其它相关文章!

(0)

相关推荐

  • python人工智能tensorflow函数tf.layers.dense使用方法

    目录 参数数量及其作用 部分参数解释: 示例 参数数量及其作用 tf.layers.dense用于添加一个全连接层. 函数如下: tf.layers.dense( inputs, #层的输入 units, #该层的输出维度 activation=None, #激活函数 use_bias=True, kernel_initializer=None, # 卷积核的初始化器 bias_initializer=tf.zeros_initializer(), # 偏置项的初始化器 kernel_regul

  • python人工智能tensorflow函数tf.assign使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有五个参数,分别是: 被赋值的变量 ref 要分配给变量的值 value. 是否验证形状 validate_shape 是否进行锁定保护 use_locking 名称 name def assign(ref, value, validate_shape=None, use_locking=None, name=None) Update 'ref' by assigning 'value' to it. This operation outp

  • Python使用random模块生成随机数操作实例详解

    本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g

  • numpy.random.shuffle打乱顺序函数的实现

    numpy.random.shuffle 在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数: def gen_data(source): while True: indices = range(len(source.images)) # indices = the number of images in the source data set random.shuffle(indices) for i in indices: image =

  • python人工智能tensorflow常见损失函数LOSS汇总

    目录 前言 运算公式 1 均方差函数 2 交叉熵函数 tensorflow中损失函数的表达 1 均方差函数 2 交叉熵函数 例子 1 均方差函数 2 交叉熵函数 前言 损失函数在机器学习中用于表示预测值与真实值之间的差距.一般而言,大多数机器学习模型都会通过一定的优化器来减小损失函数从而达到优化预测机器学习模型参数的目的.哦豁,损失函数这么必要,那都存在什么损失函数呢? 一般常用的损失函数是均方差函数和交叉熵函数. 运算公式 1 均方差函数 均方差函数主要用于评估回归模型的使用效果,其概念相对简

  • python人工智能tensorflow函数tensorboard使用方法

    目录 tensorboard相关函数及其常用参数设置 1 with tf.name_scope(layer_name): 2 tf.summary.histogram(layer_name+"/biases",biases) 3 tf.summary.scalar(“loss”,loss) 4 tf.summary.merge_all() 5 tf.summary.FileWriter(“logs/”,sess.graph) 6 write.add_summary(result,i)

  • python人工智能tensorflow函数np.random模块使用方法

    目录 np.random模块常用的一些方法介绍 例子 numpy.random.rand(d0, d1, …, dn): numpy.random.randn(d0, d1, …, dn): numpy.random.randint(low, high=None, size=None, dtype=‘I’): numpy.random.uniform(low=0.0, high=1.0, size=None): numpy.random.normal(loc=0.0, scale=1.0, si

  • python人工智能tensorflow函数tf.nn.dropout使用方法

    目录 前言 tf.nn.dropout函数介绍 例子 代码 keep_prob = 0.5 keep_prob = 1 前言 神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样. 看到这个蓝色曲线,我就知道: 很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到

  • python人工智能tensorflow函数tf.get_variable使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有十一个参数,常用的有: 名称name 变量规格shape 变量类型dtype 变量初始化方式initializer 所属于的集合collections def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partiti

  • python人工智能tensorflow函数tf.get_collection使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有两个参数,分别是key和scope. def get_collection(key, scope=None) Wrapper for Graph.get_collection() using the default graph. See tf.Graph.get_collection for more details. Args: key: The key for the collection. For example, the `Gra

  • python人工智能tensorflow构建循环神经网络RNN

    目录 学习前言 RNN简介 tensorflow中RNN的相关函数 tf.nn.rnn_cell.BasicLSTMCell tf.nn.dynamic_rnn 全部代码 学习前言 在前一段时间已经完成了卷积神经网络的复习,现在要对循环神经网络的结构进行更深层次的明确. RNN简介 RNN 是当前发展非常火热的神经网络中的一种,它擅长对序列数据进行处理. 什么是序列数据呢?举个例子. 现在假设有四个字,“我” “去” “吃” “饭”.我们可以对它们进行任意的排列组合. “我去吃饭”,表示的就是我

  • python人工智能tensorflow常用激活函数Activation Functions

    目录 常见的激活函数种类及其图像 1 sigmoid(logsig)函数 2 tanh函数 3 relu函数 4 softplus函数 tensorflow中损失函数的表达 1 sigmoid(logsig)函数 2 tanh函数 3 relu函数 4 softplus函数 激活函数在机器学习中常常用在神经网络隐含层节点与神经网络的输出层节点上,激活函数的作用是赋予神经网络更多的非线性因素,如果不用激励函数,输出都是输入的线性组合,这种情况与最原始的感知机相当,网络的逼近能力相当有限.如果能够引

  • python人工智能tensorflow构建卷积神经网络CNN

    目录 简介 隐含层介绍 1.卷积层 2.池化层 3.全连接层 具体实现代码 卷积层.池化层与全连接层实现代码 全部代码 学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络. 简介 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),

随机推荐