Python使用scipy进行曲线拟合的方法实例

目录
  • 导读
  • 曲线拟合
  • 总结

导读

曲线拟合的应用在生活中随处可见,不知道大家是否还记得物理实验中的自由落体运动中下降高度与时间关系之间的探究,在初速度为0的情况下,我们想要探究下降高度与时间的关系。

我们当时采用的方法是通过设置不同的下降时间来记录下降的高度,测量记录多组数据之后,再利用二维坐标系将记录的点绘制到坐标系当中去,然后保证绘制的曲线到这些点的距离之和最小,最终得到的曲线就是h与t的关系。

绘制出h和t的关系之后,我就可以知道任意取值t在初速度为0的情况下,下降高度h对应的值。除此之外,曲线拟合的应用还有很多例如房价预测、经济预测、股价预测等。

不知道,大家有没有思考过,为什么我们可以通过测量值来绘制出t和h的关系曲线呢?这里面用到的逻辑究竟是什么呢?其实关于曲线的拟合通常有两种解决方案:

  1. 我们已经知道了自变量(x)和因变量(y)的关系,只是不知道参数,通过观察值来计算出参数,就能计算出自变量和因变量之间的关系
  2. 利用万能函数逼近器神经网络来拟合曲线,通过定义代价函数,利用已有观察值的输入值来计算出预测值,再计算出预测值与观测值的输出值之间的差距,在通过反向传播,来计算出神经网络的参数

下面我们主要探讨如何利用方法1来实现曲线的拟合

曲线拟合

曲线拟合还可以分为两种情况,第一种就是没有约束的曲线拟合,第二种就是带有约束条件的曲线拟合。scipy中提供了curve_fit函数使用非线性的最小二乘法用来拟合没有约束条件的曲线,提供了least_squares函数用来拟合带有约束条件的曲线。

  • 没有约束条件的曲线拟合

  • 带约束条件的曲线拟合

有时候在求解曲线参数的时候,会对参数的边界做出一些限制,下面就展示了在对参数的边界做出限制的情况下如何来求解的问题。我们使用jac矩阵结合最小二乘法来计算曲线的参数

import numpy as np
from scipy.optimize import least_squares
import matplotlib.pyplot as plt

def model(x,u):
    """定义拟合的曲线
    :param x:输入值自变量
    :param u:输入值函数的参数
    :return:返回值因变量
    """
    return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

def fun(x,u,y):
    return model(x,u) - y

def jac(x,u,y):
    J = np.empty((u.size,x.size))
    den = u ** 2 + x[2] * u + x[3]
    num = u ** 2 + x[1] * u
    J[:,0] = num / den
    J[:,1] = x[0] * u / den
    J[:,2] = -x[0] * num * u / den ** 2
    J[:,3] = -x[0] * num / den ** 2
    return J

#输入值自变量
u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1,
              8.33e-2, 7.14e-2, 6.25e-2])
#输入值因变量
y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2,
              4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-2])
#函数的参数
x0 = np.array([2.5, 3.9, 4.15, 3.9])
#利用jac矩阵结合最小二乘法来计算曲线的参数,设置参数的取值在(0,100)之间
res = least_squares(fun, x0, jac=jac, bounds=(0, 100), args=(u, y), verbose=1)

#需要预测值得输入值
u_test = np.linspace(0, 5)
#利用计算的曲线参数来计算预测值
y_test = model(res.x, u_test)
plt.plot(u, y, 'o', markersize=4, label='data')
plt.plot(u_test, y_test, label='fitted model')
plt.xlabel("u")
plt.ylabel("y")
plt.legend(loc='lower right')
plt.show()

总结

到此这篇关于Python使用scipy进行曲线拟合的文章就介绍到这了,更多相关Python scipy曲线拟合内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现曲线拟合操作示例【基于numpy,scipy,matplotlib库】

    本文实例讲述了Python实现曲线拟合操作.分享给大家供大家参考,具体如下: 这两天学习了用python来拟合曲线. 一.环境配置 本人比较比较懒,所以下载的全部是exe文件来安装,安装按照顺利来安装.自动会找到python的安装路径,一直点下一步就行.还有其他的两种安装方式:一种是解压,一种是pip.我没有尝试,就不乱说八道了. 没有ArcGIS 环境的,可以不看下面这段话了. 在配置环境时遇见一个小波折,就是原先电脑装过ArcGIS10.2 ,所以其会默认安装python2.7,而且pyth

  • Python使用scipy进行曲线拟合的方法实例

    目录 导读 曲线拟合 总结 导读 曲线拟合的应用在生活中随处可见,不知道大家是否还记得物理实验中的自由落体运动中下降高度与时间关系之间的探究,在初速度为0的情况下,我们想要探究下降高度与时间的关系. 我们当时采用的方法是通过设置不同的下降时间来记录下降的高度,测量记录多组数据之后,再利用二维坐标系将记录的点绘制到坐标系当中去,然后保证绘制的曲线到这些点的距离之和最小,最终得到的曲线就是h与t的关系. 绘制出h和t的关系之后,我就可以知道任意取值t在初速度为0的情况下,下降高度h对应的值.除此之外

  • python字符串string的内置方法实例详解

    下面给大家分享python 字符串string的内置方法,具体内容详情如下所示: #__author: "Pizer Wang" #__date: 2018/1/28 a = "Let's go" print(a) print("-------------------") a = 'Let\'s go' print(a) print("-------------------") print("hello"

  • Python三种遍历文件目录的方法实例代码

    本文实例代码主要实现的是python遍历文件目录的操作,有三种方法,具体代码如下. #coding:utf-8 # 方法1:递归遍历目录 import os def visitDir(path): li = os.listdir(path) for p in li: pathname = os.path.join(path,p) if not os.path.isfile(pathname): #判断路径是否为文件,如果不是继续遍历 visitDir(pathname) else: print

  • Python实现二维曲线拟合的方法

    如下所示: from numpy import * import numpy as np import matplotlib.pyplot as plt plt.close() fig=plt.figure() plt.grid(True) plt.axis([0,10,0,8]) #列出数据 point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]] plt.xlabel("X") plt.ylabel("Y") #用于求出

  • python装饰器代替set get方法实例

    对于变量的访问和设置,我们可以使用get.set方法,如下: class student: def __init__(self,name): self.__name = name def get_name(self): return self.__name def set_name(self,name): self.__name = name 我们也可以使用python 的装饰器,用@语法糖,使得我们要使用set get功能时只需要通过.xx的形式即可 class student1: def _

  • Python中optionParser模块的使用方法实例教程

    本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内建的模块用于处理命令行参数: 一个是 getopt,<Deep in python>一书中也有提到,只能简单处理 命令行参数: 另一个是 optparse,它功能强大,而且易于使用,可以方便地生成标准的.符合Unix/Posix 规范的命令行说明. 示例如下: from optparse impo

  • Python函数装饰器常见使用方法实例详解

    本文实例讲述了Python函数装饰器常见使用方法.分享给大家供大家参考,具体如下: 一.装饰器 首先,我们要了解到什么是开放封闭式原则? 软件一旦上线后,对修改源代码是封闭的,对功能的扩张是开放的,所以我们应该遵循开放封闭的原则. 也就是说:我们必须找到一种解决方案,能够在不修改一个功能源代码以及调用方式的前提下,为其加上新功能. 总结:原则如下: 1.不修改源代码 2.不修改调用方式 目的:在遵循1和2原则的基础上扩展新功能. 二.什么是装饰器? 器:指的是工具, 装饰:指的是为被装饰对象添加

  • Python List列表对象内置方法实例详解

    本文实例讲述了Python List列表对象内置方法.分享给大家供大家参考,具体如下: 前言 在上一篇中介绍了Python的序列和String类型的内置方法,本篇继续学习作为序列类型成员之一的List类型的内置方法. 软件环境 系统 UbuntuKylin 14.04 软件 Python 2.7.3 IPython 4.0.0 列表List 列表是一种容器,存放内存对象的引用.即是任意内存对象的有序集合,不同的类型对象可以存放在同一个列表中.通过索引来访问其中的元素.可以任意的嵌套.伸长.异构.

  • Python词云的正确实现方法实例

    一.相关模块 jieba:中文分词 wordcloud :Python词云库 imageio:读取图形数据 安装: pip install jieba pip install wordcloud pip install imageio 二.wordcloud四大类 类 功能 WordCloud([font_path, width, height, -]) 生成和绘制词云对象 ImageColorGenerator(image[, default_color]) 基于图片的色彩 random_co

  • Python解析JSON数据的基本方法实例代码

    目录 一.JSON数据格式介绍 二.Python处理JSON数据 json.dumps json.loads 语法 总结 一.JSON数据格式介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. JSON建构于两种结构:json是Javascript中的对象和数组中的对象,本质上来讲就是有特定结构的字符串,所以可以通过这两种结构可以表示各种复杂的结构: 1 对象: 对象在js中表示为”{}”括起来的内容,数据结构为{key:value, key:v

随机推荐