原码, 反码与补码基础知识详细介绍

原码, 反码,补码详解

本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希望本文对大家学习计算机基础有所帮助!

一. 机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

1、机器数

一个数在计算机中的二进制表示形式,  叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

2、真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

二. 原码, 反码, 补码的基础概念和计算方法.

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

四 原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

1. 往回拨2个小时: 6 - 2 = 4

2. 往前拨10个小时: (6 + 10) mod 12 = 4

3. 往前拨10+12=22个小时: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余

记作 a ≡ b (mod m)

读作 a 与 b 关于模 m 同余。

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28关于模 12 同余.

负数取模

正数进行mod运算是很简单的. 但是负数呢?

下面是关于mod运算的数学定义:

上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的"取下界"符号:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y等于 x 减去 y 乘上 x与y的商的下界.

以 -3 mod 2 举例:

-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

所以:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

开始证明

再回到时钟的问题上:

回拨2小时 = 前拨10小时

回拨4小时 = 前拨8小时

回拨5小时= 前拨7小时

注意, 这里发现的规律!

结合上面学到的同余的概念.实际上:

(-2) mod 12 = 10

10 mod 12 = 10

-2与10是同余的.

(-4) mod 12 = 8

8 mod 12 = 8

-4与8是同余的.

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

反身性:

a ≡ a (mod m)

这个定理是很显而易见的.

线性运算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那么:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.

接下来回到二进制的问题上, 看一下: 2-1=1的问题.

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反

先到这一步, -1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码, 则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.

发现有如下规律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补

如果把[1111 1111]当成原码, 去除符号位, 则:

[0111 1111]原 = 127

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]

本人一直不善于数学, 所以如果文中有不对的地方请大家多多包含, 多多指点!

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • C语言基础 原码、反码、补码和移码详解

     原码.反码.补码.移码的作用? 在计算机内,机器数有无符号和带符号数之分.无符号数表示正数,在机器数中没有符号位.位于无符号数,若约定小数点的位置在机器数的最低位之后,则是纯整数:若约定小数点的位置在机器数的最高位之前,则是纯小数.对于带符号数,机器数的最高位是表示正.负的符号位,其余位则表示数值.若约定小数点的位置在机器数的最低数值位之后,则是纯整数:若约定小数点的位置在机器数的最高数值位之前(符号位之后),则是纯小数. 为了便于运算,带符号位的机器数可采用原码.反码和补码等不同的编码方法,

  • java中原码、反码与补码的问题分析

    1.原码.反码和补码定义 1.原码 将最高位作为符号位(以0代表正,1代表负),其余各位代表数值本身的绝对值(以二进制表示).为了简单起见,我们用1个字节来表示一个整数.     +7的原码为: 00000111     -7的原码为: 10000111 2.反码 一个数如果为正,则它的反码与原码相同:一个数如果为负,则符号位为1,其余各位是对原码取反.为了简单起见,我们用1个字节来表示一个整数:     +7的反码为:00000111     -7的反码为: 11111000 3.补码 补码:

  • 详解原码、反码与补码存储与大小

    详解原码.反码与补码存储与大小 原码: 如果机器字长为N个bit,那么一个数的原码就是N位二进制数,最高位 是符号位,1代表负数,0代表正数. 反码: 正数的反码就是原码,负数的反码就是符号位不变,其他取反. 补码: 正数的补码与其原码相同:负数的补码是在其反码的末位加1. (计算机中的数都是以补码形式存储的) 补码的形式是为了进行正负数二进制的加减操作 char为1个字节,8个bit位,看看内存中是怎么存储的 十六进制 二进制(补码) 反码 原码 实际值 char a = 127; //7f

  • 原码, 反码与补码基础知识详细介绍

    原码, 反码,补码详解 本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希望本文对大家学习计算机基础有所帮助! 一. 机器数和真值 在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念. 1.机器数 一个数在计算机中的二进制表示形式,  叫做这个数的机器数.机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1. 比如,

  • 代理服务器基础知识详细介绍

    Internet大家已经不在陌生,现在已经迈进了广大工薪阶层的家庭.越来越多的公司也纷纷将自己的内部网络接入了Internet.当然接入 Internet的方式有很多,对于普通老百姓来说,就是买一个MODEM利用PSTN(公众服务电话网络)接入Internet.而一些公司一般是利用 DDN或ISDN接入,利用租月的方式.当然个人不可能承担起租月的费用,那么如何利用一条电话线使多人上网呢?这就牵扯到了Proxy Server(代理服务器)以及如何使用代理服务器的问题. Proxy是什么呢,是代理.

  • 什么是Shell?Shell脚本基础知识详细介绍

    Shell本身是一个用C语言编写的程序,它是用户使用Linux的桥梁.Shell既是一种命令语言,又是一种程序设计语言.作为命令语言,它交互式地解释和执行用户输入的命令:作为程序设计语言,它定义了各种变量和参数,并提供了许多在高级语言中才具有的控制结构,包括循环和分支. 它虽然不是Linux系统核心的一部分,但它调用了系统核心的大部分功能来执行程序.建立文件并以并行的方式协调各个程序的运行.因此,对于用户来说,shell是最重要的实用程序,深入了解和熟练掌握shell的特性极其使用方法,是用好L

  • c语言 数据存储与原码 反码 补码详细解析

    目录 前言 1.数据的类型介绍 1.1整形家族 2.整形在数据内存中的存储 2.1 原码 反码和补码(三种整型数的表示方法) 2.2大小端字节序序的介绍 2.3 练习 3.浮点型在内存中的存储 3.1 先举一个例子 3.2 浮点数储存的规则 前言 学习本章你会了解: 1.数据类型详细介绍 2.整形在内存中的存储:以及了解原码.补码.反码 3.大小端字节序的介绍和判断 4.浮点型在内存中的存储解析 1.数据的类型介绍 在学习数据储存之前,让我们先认识一下数据类型.以下这些数据类型是我们初学c语言时

  • Kotlin 基础语法详细介绍

    Kotlin 基础语法详细介绍 基础语法 定义包名 包名的定义应当在源文件的头部 package my.demo import java.util.* // ... 文件路径和包名并不要求匹配,源文件可以被放置在文件系统任意位置 参考:包 定义函数 函数有两个Int类型参数和Int类型返回值: fun sum(a: Int, b: Int): Int { return a + b } 函数体中只有一个表达式并且作为函数的返回值: fun sum(a: Int, b: Int) = a + b 函

  • 前端组件化基础知识详细讲解

    目录 组件的基本概念 对象与组件的区别 组件 Component 特性 Attribute Attribute 对比 Property Attribute: Property: Class 属性 Style 属性 Href 属性 Input 和 value 如何设计组件状态 组件生命周期 Lifecycle Children 结束语 这里我们一起来学习前端组件化的知识,而组件化在前端架构里面是最重要的一个部分. 讲到前端架构,其实前端架构中最热门的就有两个话题,一个就是组件化,另一个就是架构模式

  • Linux shell脚本基础学习详细介绍(完整版)第1/2页

    Linux shell脚本基础学习这里我们先来第一讲,介绍shell的语法基础,开头.注释.变量和 环境变量,向大家做一个基础的介绍,虽然不涉及具体东西,但是打好基础是以后学习轻松地前提. 1. Linux 脚本编写基础 ◆1.1 语法基本介绍1.1.1 开头程序必须以下面的行开始(必须方在文件的第一行):#!/bin/sh符号#!用来告诉系统它后面的参数是用来执行该文件的程序.在这个例子中我们使用/bin/sh来执行程序.当编辑好脚本时,如果要执行该脚本,还必须使其可执行.要使脚本可执行:编译

  • SQL Server 2005基础知识详细整理

    1. ACID:指数据库事务正确执行的四个基本要素缩写:1.原子性2.一致性3.隔离性4.持久性 2.数据库对象:表(table) 视图(view) 存储过程(stored procedure) 函数(function)索引(index) 3.SQL Server 2005中包含master.model.msdb.tempdb四个系统数据库. 4.使用T-SQL语句创建数据库:CREATE DATABASE [ApressFinacial] ON  PRIMARY ( NAME = N'Apre

  • java jvm的知识详细介绍

    java jvm 详解: 关于jvm的相关知识 一.堆内存和栈内存 1.jvm中的栈内存主要存储的是基本类型的变量和对象的引用 2.jvm中的堆内存主要存储的是用new来创建的对象和数组,可变长字符串(StringBuilder和StringBuffered)都是存储在堆内存的 使用堆的优点是动态分配存储空间,更灵活,但缺点是由于要动态分配内存,所以存储速度较慢:而使用栈速度就比较快,也可以实现数据的共享,但缺点是栈中的数据大小和生存期是必须确定的,缺乏灵活性 3.静态存储分配是存储静态变量和静

  • 理解Docker(1):Docker安装和基础用法详细介绍

    Docker是一个用了一种新颖方式实现的超轻量虚拟机,在实现的原理和应用上还是和VM有巨大差别,专业的叫法是应用容器(Application Container).(我个人还是喜欢称虚拟机) 1. 安装 1.1 在 Ubuntu 14.04 上安装 Docker 前提要求: 内核版本必须是3.10或者以上 依次执行下面的步骤: sudo apt-get update sudo apt-get install apt-transport-https ca-certificates sudo apt

随机推荐