在Python中定义和使用抽象类的方法

像java一样python也可以定义一个抽象类。

在讲抽象类之前,先说下抽象方法的实现。

抽象方法是基类中定义的方法,但却没有任何实现。在java中,可以把方法申明成一个接口。而在python中实现一个抽象方法的简单的方法是:

class Sheep(object):
  def get_size(self):
    raise NotImplementedError

任何从Sheep继承下来的子类必须实现get_size方法。否则就会产生一个错误。但这种实现方法有个缺点。定义的子类只有调用那个方法时才会抛错。这里有个简单方法可以在类被实例化后触发它。使用python提供的abc模块。

import abc
class Sheep(object):
  __metaclass__ = abc.ABCMeta

  @abc.absractmethod
  def get_size(self):
    return

这里实例化Sheep类或任意从其继承的子类(未实现get_size)时候都会抛出异常。

因此,通过定义抽象类,可以定义子类的共同method(强制其实现)。

如何使用抽象类

import abc 

class A(object):
  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def load(self, input):
    return 

  @abc.abstractmethod
  def save(self, output, data):
    return

通过ABCMeta元类来创建一个抽象类, 使用abstractmethod装饰器来表明抽象方法

注册具体类

class B(object):

  def load(self, input):
    return input.read()

  def save(self, output, data):
    return output.write(data)

A.register(B)

if __name__ == '__main__':
  print issubclass(B, A)   # print True
  print isinstance(B(), A)  # print True

从抽象类注册一个具体的类

子类化实现

class C(A):

  def load(self, input):
    return input.read()

  def save(self, output, data):
    return output.write(data)

if __name__ == '__main__':
  print issubclass(C, A)   # print True
  print isinstance(C(), A)  # print True

可以使用继承抽象类的方法来实现具体类这样可以避免使用register. 但是副作用是可以通过基类找出所有的具体类

for sc in A.__subclasses__():
  print sc.__name__

# print C

如果使用继承的方式会找出所有的具体类,如果使用register的方式则不会被找出

使用__subclasshook__

使用__subclasshook__后只要具体类定义了与抽象类相同的方法就认为是他的子类

import abc

class A(object):
  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def say(self):
    return 'say yeah'

  @classmethod
  def __subclasshook__(cls, C):
    if cls is A:
      if any("say" in B.__dict__ for B in C.__mro__):
        return True
    return NotTmplementd

class B(object):
  def say(self):
    return 'hello'

print issubclass(B, A)   # True
print isinstance(B(), A)  # True
print B.__dict__      # {'say': <function say at 0x7f...>, ...}
print A.__subclasshook__(B) # True

不完整的实现

class D(A):
  def save(self, output, data):
    return output.write(data)

if __name__ == '__main__':
  print issubclass(D, A)   # print True
  print isinstance(D(), A)  # raise TypeError

如果构建不完整的具体类会抛出D不能实例化抽象类和抽象方法

具体类中使用抽象基类

import abc
from cStringIO import StringIO

class A(object):
  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def retrieve_values(self, input):
    pirnt 'base class reading data'
    return input.read()

class B(A):

  def retrieve_values(self, input):
    base_data = super(B, self).retrieve_values(input)
    print 'subclass sorting data'
    response = sorted(base_data.splitlines())
    return response

input = StringIO("""line one
line two
line three
""")

reader = B()
print reader.retrieve_values(input)

打印结果

base class reading data
subclass sorting data
['line one', 'line two', 'line three']

可以使用super来重用抽象基类中的罗辑, 但会迫使子类提供覆盖方法.

抽象属性

import abc

class A(object):
  __metaclass__ = abc.ABCMeta

  @abc.abstractproperty
  def value(self):
    return 'should never get here.'

class B(A):

  @property
  def value(self):
    return 'concrete property.'

try:
  a = A()
  print 'A.value', a.value
except Exception, err:
  print 'Error: ', str(err)

b = B()
print 'B.value', b.value

打印结果,A不能被实例化,因为只有一个抽象的property getter method.

Error: ...
print concrete property

定义抽象的读写属性

import abc

class A(object):
  __metaclass__ = abc.ABCMeta

  def value_getter(self):
    return 'Should never see this.'

  def value_setter(self, value):
    return 

  value = abc.abstractproperty(value_getter, value_setter)

class B(A):

  @abc.abstractproperty
  def value(self):
    return 'read-only'

class C(A):
  _value = 'default value'

  def value_getter(self):
    return self._value

  def value_setter(self, value):
    self._value = value

  value = property(value_getter, value_setter)

try:
  a = A()
  print a.value
except Exception, err:
  print str(err)

try:
  b = B()
  print b.value
except Exception, err:
  print str(err)

c = C()
print c.value

c.value = 'hello'
print c.value

打印结果, 定义具体类的property时必须与抽象的abstract property相同。如果只覆盖其中一个将不会工作.

error: ...
error: ...
print 'default value'
print 'hello'

使用装饰器语法来实现读写的抽象属性, 读和写的方法应该相同.

import abc

class A(object):
  __metaclass__ = abc.ABCMeta

  @abc.abstractproperty
  def value(self):
    return 'should never see this.'

  @value.setter
  def value(self, _value):
    return 

class B(A):
  _value = 'default'

  @property
  def value(self):
    return self._value

  @value.setter
  def value(self, _value):
    self._value = _value

b = B()
print b.value    # print 'default'

b.value = 'hello'
print b.value    # print 'hello'
(0)

相关推荐

  • python类:class创建、数据方法属性及访问控制详解

    在Python中,可以通过class关键字定义自己的类,然后通过自定义的类对象类创建实例对象. python中创建类 创建一个Student的类,并且实现了这个类的初始化函数"__init__": class Student(object):     count = 0     books = []     def __init__(self, name):         self.name = name 接下来就通过上面的Student类来看看Python中类的相关内容. 类构造和

  • python基础教程之类class定义使用方法

    面对对象(oop)中的对象,是一个非常重要的知识点,我们可以把它简单看做是数据以及由存取.操作这些数据的方法所组成的一个集合.我们在学习函数(function)之后,知道了如果重用代码,那为什么还要用类来取代函数呢? 类有这样一些的优点 1) .类对象是多态的:也就是多种形态,这意味着我们可以对不同的类对象使用同样的操作方法,而不需要额外写代码. 2).类的封装:封装之后,可以直接调用类的对象,来操作内部的一些类方法,不需要让使用者看到代码工作的细节. 3).类的继承:类可以从其它类或者元类中继

  • python类定义的讲解

    一.类定义: 复制代码 代码如下: class <类名>: <语句> 类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性.如果直接使用类名修改其属性,那么将直接影响到已经实例化的对象 类的私有属性: __private_attrs  两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问.在类内部的方法中使用时 self.__private_attrs类的方法 在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数

  • Python类定义和类继承详解

    一.类定义: class <类名>: <语句> 类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性 如果直接使用类名修改其属性,那么将直接影响到已经实例化的对象   类的私有属性: __private_attrs  两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问 在类内部的方法中使用时 self.__private_attrs    类的方法 在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,

  • Python中动态创建类实例的方法

    简介 在Java中我们可以通过反射来根据类名创建类实例,那么在Python我们怎么实现类似功能呢? 其实在Python有一个builtin函数import,我们可以使用这个函数来在运行时动态加载一些模块.如下: def createInstance(module_name, class_name, *args, **kwargs): module_meta = __import__(module_name, globals(), locals(), [class_name]) class_met

  • 举例讲解Python中metaclass元类的创建与使用

    元类是可以让你定义某些类是如何被创建的.从根本上说,赋予你如何创建类的控制权. 元类也是一个类,是一个type类.   元类一般用于创建类.在执行类定义时,解释器必须要知道这个类的正确的元类,如果此属性没有定义,它会向上查找父类中的__metaclass__属性.如果还没发现,就查找全局变量.   对于传统类来说,它们的元类是types.ClassType.   元类也有构造器,传递三个参数:类名,从基类继承数据的元组,和类属性字典. 下面我们来定义一个元类,要求写类的时候必须给类提供一个__s

  • Python中类的定义、继承及使用对象实例详解

    本文实例讲述了Python中类的定义.继承及使用对象的方法.分享给大家供大家参考.具体分析如下: Python编程中类的概念可以比作是某种类型集合的描述,如"人类"可以被看作一个类,然后用人类这个类定义出每个具体的人--你.我.他等作为其对象.类还拥有属性和功能,属性即类本身的一些特性,如人类有名字.身高和体重等属性,而具体值则会根据每个人的不同:功能则是类所能实现的行为,如人类拥有吃饭.走路和睡觉等功能.具体的形式如下: 例:类的概念: class 人类:             

  • 跟老齐学Python之编写类之一创建实例

    说明:关于类的这部分,我参考了<Learning Python>一书的讲解. 创建类 创建类的方法比较简单,如下: 复制代码 代码如下: class Person: 注意,类的名称一般用大写字母开头,这是惯例.当然,如果故意不遵循此惯例,也未尝不可,但是,会给别人阅读乃至于自己以后阅读带来麻烦.既然大家都是靠右走的,你就别非要在路中间睡觉了. 接下来,一般都要编写构造函数,在写这个函数之前,先解释一下什么是构造函数. 复制代码 代码如下: class Person:     def __ini

  • python自定义类并使用的方法

    本文实例讲述了python自定义类并使用的方法.分享给大家供大家参考.具体如下: class Person: def __init__(self, first, middle, last, age): self.first = first; self.middle = middle; self.last = last; self.age = age; def __str__(self): return self.first + ' ' + self.middle + ' ' + self.las

  • Python实现类的创建与使用方法示例

    本文实例讲述了Python实现类的创建与使用方法.分享给大家供大家参考,具体如下: #coding=utf8 #为了使除法总是会返回真实的商,不管操作数是整形还是浮点型. from __future__ import division ''''' 类是面向对象编程的核心,它扮演相关数据及逻辑的容器角色. 定义类语法: class ClassName(base_class[es]): "optional documentation string" static_member_declar

  • python通过定义一个类实例作为ftp回调方法

    本文实例讲述了python通过定义一个类实例作为ftp回调方法.分享给大家供大家参考.具体实现方法如下: class Writer: def __init__(self, file): self.f = open(file, "w") def __call__(self, data): self.f.write(data) self.f.write('\n') print data FILENAME = "AutoIndent.py" writer = Writer

  • Python类的定义、继承及类对象使用方法简明教程

    Python编程中类的概念可以比作是某种类型集合的描述,如"人类"可以被看作一个类,然后用人类这个类定义出每个具体的人--你.我.他等作为其对象.类还拥有属性和功能,属性即类本身的一些特性,如人类有名字.身高和体重等属性,而具体值则会根据每个人的不同:功能则是类所能实现的行为,如人类拥有吃饭.走路和睡觉等功能.具体的形式如下: # 例:类的概念 class 人类: 名字 = '未命名' # 成员变量 def 说话(内容): # 成员函数 print 内容 # 成员变量赋初始值 某人 =

随机推荐