MYSQL数据库数据拆分之分库分表总结

数据存储演进思路一:单库单表

单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。

数据存储演进思路二:单库多表

随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。

可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000 + user_0001 + …的数据刚好是一份完整的数据。

数据存储演进思路三:多库多表

随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。

Mysql数据库分库分表规则

设计表的时候需要确定此表按照什么样的规则进行分库分表。例如,当有新用户时,程序得确定将此用户信息添加到哪个表中;同理,当登录的时候我们得通过用户的账号找到数据库中对应的记录,所有的这些都需要按照某一规则进行。
路由

通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_id mod 4的方式,当用户新注册了一个账号,账号id的123,我们可以通过id mod 4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候,我们通过123 mod 4后确定记录在User_0003中。

下面是分库分表产生的问题,及注意事项

1.   分库分表维度的问题

假如用户购买了商品,需要将交易记录保存取来,如果按照用户的纬度分表,则每个用户的交易记录都保存在同一表中,所以很快很方便的查找到某用户的购买情况,但是某商品被购买的情况则很有可能分布在多张表中,查找起来比较麻烦。反之,按照商品维度分表,可以很方便的查找到此商品的购买情况,但要查找到买人的交易记录比较麻烦。

所以常见的解决方式有:

a.通过扫表的方式解决,此方法基本不可能,效率太低了。
     b.记录两份数据,一份按照用户纬度分表,一份按照商品维度分表。
     c.通过搜索引擎解决,但如果实时性要求很高,又得关系到实时搜索。

2.   联合查询的问题

联合查询基本不可能,因为关联的表有可能不在同一数据库中。

3.   避免跨库事务

避免在一个事务中修改db0中的表的时候同时修改db1中的表,一个是操作起来更复杂,效率也会有一定影响。

4.   尽量把同一组数据放到同一DB服务器上

例如将卖家a的商品和交易信息都放到db0中,当db1挂了的时候,卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。

一主多备

在实际的应用中,绝大部分情况都是读远大于写。Mysql提供了读写分离的机制,所有的写操作都必须对应到Master,读操作可以在Master和Slave机器上进行,Slave与Master的结构完全一样,一个Master可以有多个Slave,甚至Slave下还可以挂Slave,通过此方式可以有效的提高DB集群的QPS.

所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。

此外,可以看出Master是集群的瓶颈,当写操作过多,会严重影响到Master的稳定性,如果Master挂掉,整个集群都将不能正常工作。

所以,1. 当读压力很大的时候,可以考虑添加Slave机器的分式解决,但是当Slave机器达到一定的数量就得考虑分库了。 2. 当写压力很大的时候,就必须得进行分库操作。

MySQL使用为什么要分库分表?

可以用说用到MySQL的地方,只要数据量一大, 马上就会遇到一个问题,要分库分表.
这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗?
其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表
属于一个非常核用的表:朋友关系表.

但这种方式可以说不是一个最佳方式. 因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题.
这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决: 表结构调整相关的操作基
本不在可能.所以大项在使用中都会面监着分库分表的应用.

从Innodb本身来讲数据文件的Btree上只有两个锁, 叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加
新叶时都会造成表里不能写入数据.
所以分库分表还就是一个比较好的选择了.

那么分库分表多少合适呢?
经测试在单表1000万条记录一下,写入读取性能是比较好的. 这样在留点buffer,那么单表全是数据字型的保持在
800万条记录以下, 有字符型的单表保持在500万以下.

如果按 100库100表来规划,如用户业务:
500万*100*100 = 50000000万 = 5000亿记录.

心里有一个数了,按业务做规划还是比较容易的.

(0)

相关推荐

  • MySQL 常见数据拆分办法

    在生产环境中,由于业务的增长或者业务的拆分,DBA经常需要拆库操作.那么我们常见的拆库手段有哪些呢? 我这里提供几种解决办法: 1. 使用mysqldump 把表逻辑倒出,然后再source 到其它地方 2. 使用xtrabackup 把表.或者库逻辑备份出,然后再recovery出一个实例 3. 使用MySQL自带的表空间转移(Transport)[这个需要MySQL 5.6.6 以上版本支持] I: 先来看一下MySQL 的 Transport 表空间的特性吧 比如我们要把  tab_tes

  • MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能.如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待. 可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的

  • Mysql数据库性能优化三(分表、增量备份、还原)

    接上篇Mysql数据库性能优化二 对表进行水平划分     如果一个表的记录数太多了,比如上千万条,而且需要经常检索,那么我们就有必要化整为零了.如果我拆成100个表,那么每个表只有10万条记录.当然这需要数据在逻辑上可以划分.一个好的划分依据,有利于程序的简单实现,也可以充分利用水平分表的优势.比如系统界面上只提供按月查询的功能,那么把表按月拆分成12个,每个查询只查询一个表就够了.如果非要按照地域来分,即使把表拆的再小,查询还是要联合所有表来查,还不如不拆了.所以一个好的拆分依据是 最重要的

  • MySQL常用分库分表方案汇总

    目录 一.数据库瓶颈 二.分库分表 2.水平分表 3.垂直分库 4.垂直分表 三.分库分表工具 四.分库分表步骤 五.分库分表问题 1.非partition key的查询问题 2.非partition key跨库跨表分页查询问题 3.扩容问题 六.分库分表总结 一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就可以想象了吧(并发量.吞吐量.崩溃).

  • MariaDB Spider 数据库分库分表实践记录

    目录 分库分表 部署 MariaDB 实例 Docker 部署 虚拟机部署 MariaDB 配置 检查每个实例 配置 Spider 远程表 基准性能测试 加入后端数据库 哈希分片 根据值范围分片 根据列表分片 分库分表 一般来说,数据库分库分表,有以下做法: 按哈希分片:根据一条数据的标识计算哈希值,将其分配到特定的数据库引擎中: 按范围分片:根据一条数据的标识(一般是值),将其分配到特定的数据库引擎中: 按列表分片:根据某些字段的标识,如果符合条件则分配到特定的数据库引擎中. 分库分表的做法有

  • Mysql数据库分库分表全面瓦解

    目录 1 为什么要分库分表 2 垂直拆分(Scale Up 纵向扩展) 2.1 垂直分库 2.2 垂直分表 3 水平拆分(Scale Out 横向扩展) 3.1 库内分表 3.2 库内分表的实现策略 3.2.1 HASH(哈希) 3.2.2 RANGE(范围) 3.2.3 LIST(预定义列表) 3.2.4 KEY(键值) 3.2.5 Composite(复合模式) 3.3 分库分表 4 分库分表存在的问题 4.1 事务问题 4.2 跨库跨表的join问题 4.3 额外的数据管理负担和数据运算压

  • SpringBoot 2.0 整合sharding-jdbc中间件实现数据分库分表

    一.水平分割 1.水平分库 1).概念:  以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中. 2).结果  每个库的结构都一样:数据都不一样:  所有库的并集是全量数据: 2.水平分表 1).概念  以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中. 2).结果  每个表的结构都一样:数据都不一样:  所有表的并集是全量数据: 二.Shard-jdbc 中间件 1.架构图 2.特点 1).Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零. 2).适

  • MySQL分库分表总结讲解

    项目开发中,我们的数据库数据越来越大,随之而来的是单个表中数据太多.以至于查询变慢,而且由于表的锁机制导致应用操作也受到严重影响,出现了数据库性能瓶颈. 当出现这种情况时,我们可以考虑分库分表,即将单个数据库或表进行拆分,拆分成多个库和多个数据表,然后用户访问的时候,根据一定的算法与逻辑,让用户访问不同的库.不同的表,这样数据分散到多个数据表中,减少了单个数据表的访问压力.提升了数据库访问性能. 下面是对项目中分库分表的一些总结: 单库单表 单库单表是最常见的数据库设计,例如,有一张用户(use

  • 数据库分库分表是什么,什么情况下需要用分库分表

    数据量在什么情况下需要分表? 为了保证数据库的查询效率,当数据达成一定量时建议进行分表操作 1.oracle 当oracle单表的数据量大于2000万行时,建议进行水平分拆. 2.mysql 当mysql单表的数据量大于1000万行时,建议进行水平分拆. 单表容量到了1000W以上基本上稍微复杂一点的SQL都需要仔细优化,这时候的SQL耗时主要集中在磁盘IO上,数据命令缓存的概率降低,总之不好搞,如果是正常的互联网项目,提前分库分表,在前期能做的先做了,后面会省很多时间处理数据迁移的事情,数据操

  • MySQL分库分表与分区的入门指南

    前言 关系型数据库比较容易成为系统瓶颈,单机存储容量.连接数.处理能力都有限,当数据量和并发量起来之后,就必须对数据库进行切分了. 数据切分(sharding)的手段就是分库分表.分库分表有两方面,可能是光分库不分表,也可能是光分表不分库. 数据库分布式的核心内容无非就是数据切分,以及切分后对数据的定位.整合. 为什么要分库分表 分表 单表数据量太大时,会严重影响sql执行的性能.一般单表到达几百万的时候,性能就会相对差一些了,这时就得分表了. 分表就是把一个表的数据放到多个表中,然后查询的时候

  • MySQL分库分表详情

    一.业务场景介绍 假设目前有一个电商系统使用的是MySQL,要设计大数据量存储.高并发.高性能可扩展的方案,数据库中有用户表.用户会非常多,并且要实现高扩展性,你会怎么去设计? OK咱们先看传统的分库分表方式 当然还有些小伙伴知道按照省份/地区或一定的业务关系进行数据库拆分 OK,问题来了,如何保证合理的让数据存储在不同的库不同的表里呢?让库减少并发压力?应该怎么去制定分库分表的规则?不用急,这不就来了 二.水平分库分表方法 1.RANGE 第一种方法们可以指定一个数据范围来进行分表,例如从1~

随机推荐