pyecharts实现数据可视化

目录
  • 1.概述
  • 2.安装
  • 3.数据可视化代码
    • 3.1柱状图
    • 3.2折线图
    • 3.3饼图

1.概述

pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑。

2.安装

python3环境下的安装:

pip3 install pyecharts

3.数据可视化代码

3.1 柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
 
c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), stack="stack1")
    .add_yaxis("商家B", Faker.values(), stack="stack1")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
    .render("bar_stack0.html")
)

执行上述代码,会在相对目录生成mycharts.html文件,通过页面打开。

3.2 折线图

import pyecharts.options as opts
from pyecharts.charts import Line
 
"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://echarts.apache.org/examples/editor.html?c=line-smooth
目前无法实现的功能:
暂无
"""
 
 
x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]
 
 
(
    Line()
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(is_show=False),
        xaxis_opts=opts.AxisOpts(type_="category"),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
    )
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="",
        y_axis=y_data,
        symbol="emptyCircle",
        is_symbol_show=True,
        is_smooth=True,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .render("smoothed_line_chart.html")
)

3.3 饼图

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
 
c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-Radius"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_radius.html")
)

到此这篇关于pyecharts实现数据可视化的文章就介绍到这了,更多相关pyecharts数据可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化Pyecharts库的使用教程

    目录 一.Pyecharts 概述 1.1 Pyecharts 特性 1.2 Pyecharts 入门案例 二.Pyecharts 配置项 2.1 全局配置项 2.2 系列配置项 三.Pyecharts 的总结 一.Pyecharts 概述 Pyechart 是一个用于生成 Echarts 图表(Echarts 是基于 Javascript 的开源可视化图表库)的 Python 第三方库. 1.1 Pyecharts 特性 根据官方文档的介绍,Pyecharts 的特性如下: 1.简洁的 API

  • python用pyecharts实现地图数据可视化

    有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较.但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现.在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制. 我们先来看看最终效果: 关于绘图数据 基于时间和截面两个维度,可把数据分为截面数据.时间序列及面板数据.在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据.因此,

  • Python数据可视化Pyecharts库实现桑葚图效果

    目录 基本思路我总结大概有三步: 1. 先申明使用sankey 2. 使用add 添加对sankey图的配置信息 3. 最后render生成html文件展示 首先介绍一下什么是桑葚图? 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图. 它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源.材料成分.金融等数据的可视化分析. 因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"

  • Python数据可视化之基于pyecharts实现的地理图表的绘制

    一.例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目.百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态.即时.直观地展现中国春节前后人口大迁徙的轨迹与特征. 网址:https://qianxi.baidu.com/2021/ 二.基础语法介绍 语法 说明 from pyecharts.charts import Geo 导入地图库 Geo() Pyecharts地理图表绘制 .add_

  • python数据可视化Pyecharts库sankey修改桑葚图颜色

    目录 在上一篇关于绘画Sankey桑葚图的文章里,已经介绍过大致的过程,本文主要解决如何自定义/修改 所想要的颜色, 如下所示一个桑葚图: 想要修改Phenotype1, 使用itemStyle中的属性color,给每个结点添加一个字典属性,设置所需要的颜色即可. nodes = [{'name':'Phenotype 1','itemStyle':{'color':"#FA8072"}}, {'name':'Phenotype 2','itemStyle':{'color':&quo

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

  • pyecharts在数据可视化中的应用详解

    使用pyecharts进行数据可视化 安装 pip install pyecharts 也可以在pycharm软件里进行下载pyecharts库包. 下载成功后进行查询版本号 import pyecharts print(pyecharts.__version__) pyecharts的中文官网 可以查看pyecharts的中文官网介绍http://pyecharts.org/#/zh-cn/intro. 一般的使用方法 add() 该方法主要用于添加图表的数据和设置各种配置项. show_co

  • 一文带你掌握Pyecharts地理数据可视化的方法

    本文主要介绍了Pyecharts地理数据可视化,分享给大家,具体如下: 一.Pyecharts简介和安装 1. 简介 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 Python 是一门富有表达力的语言,很适合用于数据处理.当数据分析遇上数据可视化时,pyecharts 诞生了. 简洁的 API 设计,使用如丝滑般流畅,支持链式调用 囊括了 30+ 种常见图表,应有尽有 支持主流 Notebook 环境,Jupyter Noteboo

  • pyecharts实现数据可视化

    目录 1.概述 2.安装 3.数据可视化代码 3.1柱状图 3.2折线图 3.3饼图 1.概述 pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑. 2.安装 python3环境下的安装: pip3 install pyecharts 3.数据可视化代码 3.1 柱状图 from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker im

  • Python数据可视化Pyecharts制作Heatmap热力图

    目录 HeatMap:热力图 1.基本设置 2.热力图数据项 Demo 举例 1.基础热力图 本文介绍基于 Python3 的 Pyecharts 制作 Heatmap(热力图 时需要使用的设置参数和常用模板案例,可根据实际情况对案例中的内容进行调整即可. 使用 Pyecharts 进行数据可视化时可提供直观.交互丰富.可高度个性化定制的数据可视化图表.案例中的代码内容基于 Pyecharts 1.x 版本 . HeatMap:热力图 1.基本设置 class HeatMap( # 初始化配置项

  • Python echarts实现数据可视化实例详解

    目录 1.概述 2.安装 3.数据可视化代码 3.1柱状图 3.2折线图 3.3饼图 总结 1.概述 pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑. 2.安装 python3环境下的安装: pip3 install pyecharts 3.数据可视化代码 3.1 柱状图 from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker

  • Python 数据可视化pyecharts的使用详解

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe

  • Python数据可视化 pyecharts实现各种统计图表过程详解

    1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

  • Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

    python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观.清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3 柱状图 基本柱状图 from pyecharts import Bar # 基本柱状图 bar = Bar("基本柱状图", "副标题") bar.use_theme('dark') # 暗黑色主题 bar.add('真实成本', # label ["1月&q

  • Flask和pyecharts实现动态数据可视化

    1:数据源 Hollywood Movie Dataset: 好莱坞2006-2011数据集 实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化 gitee地址:https://gitee.com/dgwcode/an_example_of_py_learning/tree/master/MovieViwer 1.数据例子: Film ,Major Studio,Budget 300,Warner Bros, 300,Warner Bros.,65 3:10 to Yum

  • python使用pyecharts库画地图数据可视化的实现

    python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果 导库 from pyecharts import options as opts from pyecharts.charts import Map 中国地图 代码 data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),

随机推荐