使用python实现数组、链表、队列、栈的方法

引言

什么是数据结构?

  • 数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。
  • 简单来说,数据结构就是设计数据以何种方式组织并存储在计算机中。
  • 比如:列表,集合和字典等都是数据结构
  • N.Wirth:“程序=数据结构+算法”

数据结构按照其逻辑结构可分为线性结构、树结构、图结构

  • 线性结构:数据结构中的元素存在一对一的互相关系。
  • 树结构:数据结构中的元素存在一对多的互相关系。
  • 图结构:数据结构中的元素存在多对多的互相关系。

数组

在python中是没有数组的,有的是列表,它是一种基本的数据结构类型。

实现

class Array(object):
 def __init__(self, size=32):
  """
  :param size: 长度
  """
  self._size = size
  self._items = [None] * size

 # 在执行array[key]时执行
 def __getitem__(self, index):
  return self._items[index]

 # 在执行array[key] = value 时执行
 def __setitem__(self, index, value):
  self._items[index] = value

 # 在执行len(array) 时执行
 def __len__(self):
  return self._size

 # 清空数组
 def clear(self, value=None):
  for i in range(len(self._items)):
   self._items[i] = value

 # 在遍历时执行
 def __iter__(self):
  for item in self._items:
   yield item

使用

a = Array(4)
a[0] = 1
print(a[0]) # 1

a.clear()
print(a[0]) # None

a[0] = 1
a[1] = 2
a[3] = 4
for i in a:
 print(i) # 1, 2, None, 4

链表

链表中每一个元素都是一个对象,每一个对象被称为节点,包含有数据域value和指向下一个节点的指针next。

通过各个节点直接的相互链接,最终串成一个链表。

实现

class Node(object):
 def __init__(self, value=None, next=None):
  self.value, self.next = value, next

class LinkedList(object):
 def __init__(self, size=None):
  """
  :param size: int or None, 如果None,则该链表可以无限扩充
  """
  self.size = size
  # 定义一个根节点
  self.root = Node()
  # 尾节点始终指向最后一个节点
  self.tail_node = None
  self.length = 0
 def __len__(self):
  return self.length
 def append(self, value):
  # size 不为 None, 且长度大于等于size则链表已满
  if self.size and len(self) >= self.size:
   raise Exception("LinkedList is full")
  # 构建节点
  node = Node(value)
  tail_node = self.tail_node
  # 判断尾节点是否为空
  if tail_node is None:
   # 还没有 append 过,length = 0, 追加到 root 后
   self.root.next = node
  else:
   # 否则追加到最后一个节点的后边,并更新最后一个节点是 append 的节点
   tail_node.next = node
  # 把尾节点指向node
  self.tail_node = node
  # 长度加一
  self.length += 1
 # 往左边添加
 def append_left(self, value):
  if self.size and len(self) >= self.size:
   raise Exception("LinkedList is full")
  # 构建节点
  node = Node(value)
  # 链表为空,则直接添加设置
  if self.tail_node is None:
   self.tail_node = node
  # 设置头节点为根节点的下一个节点
  head_node = self.root.next
  # 把根节点的下一个节点指向node
  self.root.next = node
  # 把node的下一个节点指向原头节点
  node.next = head_node
  # 长度加一
  self.length += 1
 # 遍历节点
 def iter_node(self):
  # 第一个节点
  current_node = self.root.next
  # 不是尾节点就一直遍历
  while current_node is not self.tail_node:
   yield current_node
   # 移动到下一个节点
   current_node = current_node.next
  # 尾节点
  if current_node is not None:
   yield current_node
 # 实现遍历方法
 def __iter__(self):
  for node in self.iter_node():
   yield node.value
 # 删除指定元素
 def remove(self, value):
  # 删除一个值为value的节点,只要使该节点的前一个节点的next指向该节点的下一个
  # 定义上一个节点
  perv_node = self.root
  # 遍历链表
  for current_node in self.iter_node():
   if current_node.value == value:
    # 把上一个节点的next指向当前节点的下一个节点
    perv_node.next = current_node.next
    # 判断当前节点是否是尾节点
    if current_node is self.tail_node:
     # 更新尾节点 tail_node
     # 如果第一个节点就找到了,把尾节点设为空
     if perv_node is self.root:
      self.tail_node = None
     else:
      self.tail_node = perv_node
    # 删除节点,长度减一,删除成功返回1
    del current_node
    self.length -= 1
    return 1
   else:
    perv_node = current_node
  # 没找到返回-1
  return -1
 # 查找元素,找到返回下标,没找到返回-1
 def find(self, value):
  index = 0
  # 遍历链表,找到返回index,没找到返回-1
  for node in self.iter_node():
   if node.value == value:
    return index
   index += 1
  return -1
 # 删除第一个节点
 def popleft(self):
  # 链表为空
  if self.root.next is None:
   raise Exception("pop from empty LinkedList")
  # 找到第一个节点
  head_node = self.root.next
  # 把根节点的下一个节点,指向第一个节点的下一个节点
  self.root.next = head_node.next
  # 获取删除节点的value
  value = head_node.value
  # 如果第一个节点是尾节点, 则把尾节点设为None
  if head_node is self.tail_node:
   self.tail_node = None
  # 长度减一,删除节点,返回该节点的值
  self.length -= 1
  del head_node
  return value
 # 清空链表
 def clear(self):
  for node in self.iter_node():
   del node
  self.root.next = None
  self.tail_node = None
  self.length = 0
 # 反转链表
 def reverse(self):
  # 第一个节点为当前节点,并把尾节点指向当前节点
  current_node = self.root.next
  self.tail_node = current_node
  perv_node = None
  while current_node:
   # 下一个节点
   next_node = current_node.next
   # 当前节点的下一个节点指向perv_node
   current_node.next = perv_node
   # 当前节点的下一个节点为空,则把根节点的next指向当前节点
   if next_node is None:
    self.root.next = current_node
   # 把当前节点赋值给perv_node
   perv_node = current_node
   # 把下一个节点赋值为当前节点
   current_node = next_node

使用

ll = LinkedList()

ll.append(0)
ll.append(1)
ll.append(2)
ll.append(3)
print(len(ll)) # 4
print(ll.find(2)) # 2
print(ll.find(-1)) # -1

ll.clear()
print(len(ll)) # 0
print(list(ll)) # []

循环链表

双链表中每一个节点有两个指针,一个指向后面节点、一个指向前面节点。

循环链表实现

class Node(object):
 def __init__(self, value=None, prev=None, next=None):
  self.value = value
  self.prev = prev
  self.next = next

class CircularDoubleLinkedList(object):
 """
 双向循环链表
 """

 def __init__(self, maxsize=None):
  self.maxsize = maxsize
  node = Node()
  node.prev = node
  node.next = node
  self.root = node
  self.length = 0

 def __len__(self):
  return self.length

 def head_node(self):
  return self.root.next

 def tail_node(self):
  return self.root.prev

 # 遍历
 def iter_node(self):
  if self.root.next is self.root:
   return
  current_node = self.root.next
  while current_node.next is not self.root:
   yield current_node
   current_node = current_node.next
  yield current_node

 def __iter__(self):
  for node in self.iter_node():
   yield node.value

 # 反序遍历
 def iter_node_reverse(self):
  if self.root.prev is self.root:
   return
  current_node = self.root.prev
  while current_node.prev is not self.root:
   yield current_node
   current_node = current_node.prev
  yield current_node

 def append(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  tail_node = self.tail_node() or self.root
  tail_node.next = node
  node.prev = tail_node
  node.next = self.root
  self.root.prev = node
  self.length += 1

 def append_left(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  if self.root.next is self.root:
   self.root.next = node
   node.prev = self.root
   node.next = self.root
   self.root.prev = node
  else:
   node.next = self.root.next
   self.root.next.prev = node
   self.root.next = node
   node.prev = self.root
  self.length += 1

 def remove(self, node):
  if node is self.root:
   return
  node.next.prev = node.prev
  node.prev.next = node.next
  self.length -= 1
  return node

循环链表的使用

dll = CircularDoubleLinkedList()

dll.append(0)
dll.append(1)
dll.append(2)

assert list(dll) == [0, 1, 2]
print(list(dll)) # [0, 1, 2]

print([node.value for node in dll.iter_node()]) # [0, 1, 2]
print([node.value for node in dll.iter_node_reverse()]) # [2, 1, 0]

headnode = dll.head_node()
print(headnode.value) # 0
dll.remove(headnode)
print(len(dll)) # 2

队列

队列(Queue)是一个数据集合,仅允许在列表的一端进行插入,另一端进行删除。

进行插入的一端成为队尾(rear),插入动作称为进队或入队。

进行删除的一端称为队头(front),删除动作称为出队。

队列的性质:先进先出(First-in, First-out)。

基于数组实现环形队列

class Array(object):
 def __init__(self, size=32):
  """
  :param size: 长度
  """
  self._size = size
  self._items = [None] * size

 # 在执行array[key]时执行
 def __getitem__(self, index):
  return self._items[index]

 # 在执行array[key] = value 时执行
 def __setitem__(self, index, value):
  self._items[index] = value

 # 在执行len(array) 时执行
 def __len__(self):
  return self._size

 # 清空数组
 def clear(self, value=None):
  for i in range(len(self._items)):
   self._items[i] = value

 # 在遍历时执行
 def __iter__(self):
  for item in self._items:
   yield item

class ArrayQueue(object):
 def __init__(self, maxsize):
  self.maxsize = maxsize
  self.array = Array(maxsize)
  self.head = 0
  self.tail = 0

 def __len__(self):
  return self.head - self.tail

 # 入队
 def push(self, value):
  if len(self) >= self.maxsize:
   raise Exception("Queue is full")
  self.array[self.head % self.maxsize] = value
  self.head += 1

 # 出队
 def pop(self):
  value = self.array[self.tail % self.maxsize]
  self.tail += 1
  return value

使用

size = 5
q = ArrayQueue(size)
for i in range(size):
 q.push(i)

print(len(q)) # 5

print(q.pop()) # 0
print(q.pop()) # 1

基于双向链表实现双向队列

class Node(object):
 def __init__(self, value=None, prev=None, next=None):
  self.value = value
  self.prev = prev
  self.next = next

class CircularDoubleLinkedList(object):
 """
 双向循环链表
 """

 def __init__(self, maxsize=None):
  self.maxsize = maxsize
  node = Node()
  node.prev = node
  node.next = node
  self.root = node
  self.length = 0

 def __len__(self):
  return self.length

 def head_node(self):
  return self.root.next

 def tail_node(self):
  return self.root.prev

 # 遍历
 def iter_node(self):
  if self.root.next is self.root:
   return
  current_node = self.root.next
  while current_node.next is not self.root:
   yield current_node
   current_node = current_node.next
  yield current_node

 def __iter__(self):
  for node in self.iter_node():
   yield node.value

 # 反序遍历
 def iter_node_reverse(self):
  if self.root.prev is self.root:
   return
  current_node = self.root.prev
  while current_node.prev is not self.root:
   yield current_node
   current_node = current_node.prev
  yield current_node

 def append(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  tail_node = self.tail_node() or self.root
  tail_node.next = node
  node.prev = tail_node
  node.next = self.root
  self.root.prev = node
  self.length += 1

 def append_left(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  if self.root.next is self.root:
   self.root.next = node
   node.prev = self.root
   node.next = self.root
   self.root.prev = node
  else:
   node.next = self.root.next
   self.root.next.prev = node
   self.root.next = node
   node.prev = self.root
  self.length += 1

 def remove(self, node):
  if node is self.root:
   return
  node.next.prev = node.prev
  node.prev.next = node.next
  self.length -= 1
  return node

# 双向队列
class Deque(CircularDoubleLinkedList):
 # 从右边出队
 def pop(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  tail_node = self.tail_node()
  value = tail_node.value
  self.remove(tail_node)
  return value

 # 从左边出队
 def popleft(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  head_node = self.head_node()
  value = head_node.value
  self.remove(head_node)
  return value

双向队列

两端都可以进行插入,删除。

基于双向链表实现双向队列

class Node(object):
 def __init__(self, value=None, prev=None, next=None):
  self.value = value
  self.prev = prev
  self.next = next

class CircularDoubleLinkedList(object):
 """
 双向循环链表
 """

 def __init__(self, maxsize=None):
  self.maxsize = maxsize
  node = Node()
  node.prev = node
  node.next = node
  self.root = node
  self.length = 0

 def __len__(self):
  return self.length

 def head_node(self):
  return self.root.next

 def tail_node(self):
  return self.root.prev

 # 遍历
 def iter_node(self):
  if self.root.next is self.root:
   return
  current_node = self.root.next
  while current_node.next is not self.root:
   yield current_node
   current_node = current_node.next
  yield current_node

 def __iter__(self):
  for node in self.iter_node():
   yield node.value

 # 反序遍历
 def iter_node_reverse(self):
  if self.root.prev is self.root:
   return
  current_node = self.root.prev
  while current_node.prev is not self.root:
   yield current_node
   current_node = current_node.prev
  yield current_node

 def append(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  tail_node = self.tail_node() or self.root
  tail_node.next = node
  node.prev = tail_node
  node.next = self.root
  self.root.prev = node
  self.length += 1

 def append_left(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  if self.root.next is self.root:
   self.root.next = node
   node.prev = self.root
   node.next = self.root
   self.root.prev = node
  else:
   node.next = self.root.next
   self.root.next.prev = node
   self.root.next = node
   node.prev = self.root
  self.length += 1

 def remove(self, node):
  if node is self.root:
   return
  node.next.prev = node.prev
  node.prev.next = node.next
  self.length -= 1
  return node

# 双向队列
class Deque(CircularDoubleLinkedList):
 # 从右边出队
 def pop(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  tail_node = self.tail_node()
  value = tail_node.value
  self.remove(tail_node)
  return value

 # 从左边出队
 def popleft(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  head_node = self.head_node()
  value = head_node.value
  self.remove(head_node)
  return value

双向队列的使用

dq = Deque()
dq.append(1)
dq.append(2)
print(list(dq)) # [1, 2]

dq.appendleft(0)
print(list(dq)) # [0, 1, 2]

dq.pop()
print(list(dq)) # [0, 1]

dq.popleft()
print(list(dq)) # [1]

dq.pop()
print(len(dq)) # 0

栈(Stack)是一个数据集合,可以理解为只能在一端插入或删除操作的链表。

栈的特点:后进先出(Last-in, First-out)

栈的概念:

  • 栈顶
  • 栈底

栈的基本操作:

  • 进栈(压栈):push
  • 出栈:pop

基于双向队列实现

class Node(object):
 def __init__(self, value=None, prev=None, next=None):
  self.value = value
  self.prev = prev
  self.next = next

class CircularDoubleLinkedList(object):
 """
 双向循环链表
 """
 def __init__(self, maxsize=None):
  self.maxsize = maxsize
  node = Node()
  node.prev = node
  node.next = node
  self.root = node
  self.length = 0

 def __len__(self):
  return self.length

 def head_node(self):
  return self.root.next

 def tail_node(self):
  return self.root.prev

 # 遍历
 def iter_node(self):
  if self.root.next is self.root:
   return
  current_node = self.root.next
  while current_node.next is not self.root:
   yield current_node
   current_node = current_node.next
  yield current_node

 def __iter__(self):
  for node in self.iter_node():
   yield node.value

 # 反序遍历
 def iter_node_reverse(self):
  if self.root.prev is self.root:
   return
  current_node = self.root.prev
  while current_node.prev is not self.root:
   yield current_node
   current_node = current_node.prev
  yield current_node

 def append(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  tail_node = self.tail_node() or self.root
  tail_node.next = node
  node.prev = tail_node
  node.next = self.root
  self.root.prev = node
  self.length += 1

 def append_left(self, value):
  if self.maxsize is not None and len(self) >= self.maxsize:
   raise Exception("LinkedList is full")
  node = Node(value)
  if self.root.next is self.root:
   self.root.next = node
   node.prev = self.root
   node.next = self.root
   self.root.prev = node
  else:
   node.next = self.root.next
   self.root.next.prev = node
   self.root.next = node
   node.prev = self.root
  self.length += 1

 def remove(self, node):
  if node is self.root:
   return
  node.next.prev = node.prev
  node.prev.next = node.next
  self.length -= 1
  return node

class Deque(CircularDoubleLinkedList):
 def pop(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  tail_node = self.tail_node()
  value = tail_node.value
  self.remove(tail_node)
  return value

 def popleft(self):
  if len(self) <= 0:
   raise Exception("stark is empty!")
  head_node = self.head_node()
  value = head_node.value
  self.remove(head_node)
  return value

class Stack(object):
 def __init__(self):
  self.deque = Deque() 

 # 压栈
 def push(self, value):
  self.deque.append(value)

 # 出栈
 def pop(self):
  return self.deque.pop()

使用

s = Stack()
s.push(0)
s.push(1)
s.push(2)

print(s.pop()) # 2
print(s.pop()) # 1
print(s.pop()) # 0

 总结

以上所述是小编给大家介绍的使用python实现数组、链表、队列、栈的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • python对数组进行反转的方法

    本文实例讲述了python对数组进行反转的方法.分享给大家供大家参考.具体实现方法如下: arr = [1,2,3] arr.reverse() print(arr) 输出: [3,2,1] 希望本文所述对大家的Python程序设计有所帮助.

  • 对Python中列表和数组的赋值,浅拷贝和深拷贝的实例讲解

    对Python中列表和数组的赋值,浅拷贝和深拷贝的实例讲解 列表赋值: >>> a = [1, 2, 3] >>> b = a >>> print b [1, 2, 3] >>> a[0] = 0 >>> print b [0, 2, 3] 解释:[1, 2, 3]被视作一个对象,a,b均为这个对象的引用,因此,改变a[0],b也随之改变 如果希望b不改变,可以用到切片 >>> b = a[:] &

  • Python基于list的append和pop方法实现堆栈与队列功能示例

    本文实例讲述了Python基于list的append和pop方法实现堆栈与队列功能.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 堆栈: 堆栈是一个后进先出(LIFO)的数据结构. 在栈上"push"元素是个常用术语,意思是把一个对象添加到堆栈中. 删除一个元素,可以把它"pop"出堆栈. 队列: 队列是一种先进先出(FIFO)的数据类型. 新的元素通过"入队"的方式添加进队列的末尾, "出对"就是从

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

  • 栈和队列数据结构的基本概念及其相关的Python实现

    先来回顾一下栈和队列的基本概念: 相同点:从"数据结构"的角度看,它们都是线性结构,即数据元素之间的关系相同. 不同点:栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表. 队列(Queue)是限定只能在表的一端进行插入和在另一端进行删除操作的线性表.它们是完全不同的数据类型.除了它们各自的基本操作集不同外,主要区别是对插入和删除操作的"限定". 栈必须按"后进先出"的规则进行操作:比如说,小学老师批改学生的作业,如果不打乱作业本的顺

  • Java基于链表实现栈的方法详解

    本文实例讲述了Java基于链表实现栈的方法.分享给大家供大家参考,具体如下: 在上几小节中我们实现了基本的链表结构,并在上一节的底部给出了有关链表的源码,此处在贴一次吧,猛戳 在开始栈的实现之前,我们再来看看关于链表的只在头部进行的增加.删除.查找操作,时间复杂度均为O(1),基于链表的这几个优势,我们在此基础上实现栈. 前言,在写本小节之前,我们已经实现了一个基于静态数组的栈,转到查看.此处我们实现基于链表的栈. 1.链表类拷贝到Stack 包下: 在实现基于静态数组的栈的时候,我们已经新建了

  • 对python numpy数组中冒号的使用方法详解

    python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

  • 对Python中数组的几种使用方法总结

    二维数组的初始化 matirx_done = [[0 for i in range(0, len(matirx))]for j in range(0, len(matirx[0]))] 就将其初始化为一个与matrix相同大小的元素全为 0 的矩阵 数组的多级排序 在数组 idea_collect = [[3, 1, 2], [3, 2, 1], [3, 2, 2], [3, 1, 1]] 中, 先按照第二项排列, 再按照第三项倒序排列 可写为: idea_collect.sort(key=la

  • Python中数组,列表:冒号的灵活用法介绍(np数组,列表倒序)

    让我们来看一个例子: import numpy as np x=np.array([[1,2,3],[5,6,7],[7,8,9]]) print(x) Out[64]: array([[1, 2, 3], [5, 6, 7], [7, 8, 9]]) 以上的结果我想大家应该没问题把,就是定义了一个np数组,关键在下面 print(x[:,::-1]) Out[65]: [[3 2 1] [7 6 5] [9 8 7]] 以上的代码实现了一种功能,就是将数组倒序排列了,每个维度上倒序,这段代码怎

  • 使用python实现数组、链表、队列、栈的方法

    引言 什么是数据结构? 数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成. 简单来说,数据结构就是设计数据以何种方式组织并存储在计算机中. 比如:列表,集合和字典等都是数据结构 N.Wirth:"程序=数据结构+算法" 数据结构按照其逻辑结构可分为线性结构.树结构.图结构 线性结构:数据结构中的元素存在一对一的互相关系. 树结构:数据结构中的元素存在一对多的互相关系. 图结构:数据结构中的元素存在多对多的互相关系. 数组 在python中是没有数

  • Python编程实现双链表,栈,队列及二叉树的方法示例

    本文实例讲述了Python编程实现双链表,栈,队列及二叉树的方法.分享给大家供大家参考,具体如下: 1.双链表 class Node(object): def __init__(self, value=None): self._prev = None self.data = value self._next = None def __str__(self): return "Node(%s)"%self.data class DoubleLinkedList(object): def

  • Python实现栈的方法详解【基于数组和单链表两种方法】

    本文实例讲述了Python实现栈的方法.分享给大家供大家参考,具体如下: 前言 使用Python 实现栈. 两种实现方式: 基于数组 - 数组同时基于链表实现 基于单链表 - 单链表的节点时一个实例化的node 对象 完整代码可见GitHub: https://github.com/GYT0313/Python-DataStructure/tree/master/5-stack 目录结构: 注:一个完整的代码并不是使用一个py文件,而使用了多个文件通过继承方式实现. 1. 超类接口代码 arra

  • C++线性表深度解析之动态数组与单链表和栈及队列的实现

    目录 一.线性表介绍 线性表性质 二.动态数组 1)分析与设计 2)实现 三.单链表(企业设计方式) 1)分析与设计 2)实现 四.栈(受限线性表) 1)利用数组实现栈 2)利用单链表实现栈 3)栈的应用——就近匹配 1.算法思想 2.实现 五.队列(受限线性表) 1)队列的顺序存储 2)利用单链表实现队列 数据结构大体可以分为两个部分:逻辑结构和物理结构. 物理结构大体也可以分为两个部分,即顺序结构和链式存储结构. 而线性结构就是逻辑结构中的一种. 一.线性表介绍 线性表是零个或多个数据元素组

  • Python中栈、队列与优先级队列的实现方法

    前言 栈.队列和优先级队列都是非常基础的数据结构.Python作为一种"编码高效"的语言,对这些基础的数据结构都有比较好的实现.在业务需求开发过程中,不应该重复造轮子,今天就来看看些数据结构都有哪些实现. 0x00 栈(Stack) 栈是一种LIFO(后进先出)的数据结构,有入栈(push).出栈(pop)两种操作,且只能操作栈顶元素. 在Python中有多种可以实现栈的数据结构. 1.list list是Python内置的列表数据结构,它支持栈的特性,有入栈和出栈操作.只不过用lis

  • Java数据结构之链表、栈、队列、树的实现方法示例

    本文实例讲述了Java数据结构之链表.栈.队列.树的实现方法.分享给大家供大家参考,具体如下: 最近无意中翻到一本书,闲来无事写几行代码,实现几种常用的数据结构,以备后查. 一.线性表(链表) 1.节点定义 /**链表节点定义 * @author colonel * */ class Node { public int data; Node next=null; public Node(int data){ this.data=data; } } 2.链表操作类 /**链表操作类 * @auth

随机推荐