Pandas将列表(List)转换为数据框(Dataframe)
Python中将列表转换成为数据框有两种情况:第一种是两个不同列表转换成一个数据框,第二种是一个包含不同子列表的列表转换成为数据框。
第一种:两个不同列表转换成为数据框
from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[5,6,7,8]#列表b c={"a" : a, "b" : b}#将列表a,b转换成字典 data=DataFrame(c)#将字典转换成为数据框 print(data)
输出的结果为
a b
0 1 5
1 2 6
2 3 7
3 4 8
第二种:将包含不同子列表的列表转换为数据框
from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表[1,2,3,4]和[5,6,7,8] data=DataFrame(a)#这时候是以行为标准写入的 print(data)
输出结果:
0 1 2 3
0 1 2 3 4
1 5 6 7 8
data=data.T#转置之后得到想要的结果 data.rename(columns={0:'a',1:'b'},inplace=True)#注意这里0和1都不是字符串 print(data)
a b
0 1 5
1 2 6
2 3 7
3 4 8
到此这篇关于Pandas将列表(List)转换为数据框(Dataframe)的文章就介绍到这了,更多相关Pandas 列表转换为数据框内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
从列表或字典创建Pandas的DataFrame对象的方法
介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理. 我永远记不住我是否应该使用 from_dic
-
Python3 pandas 操作列表实例详解
1.首先需要安装pandas, 安装的时候可能由依赖的包需要安装,根据运行时候的提示,缺少哪个库,就pip 安装哪个库. 2.示例代码 import pandas as pd from pandas import ExcelWriter EX_PATH = "E:\\code\\test2.xlsx" #读取excel里面的内容 data = pd.read_excel(EX_PATH,sheet_name='Sheet1') #新增加一列内容 lista = [21, 21, 20,
-
pandas 转换成行列表进行读取与Nan处理的方法
pandas中有时需要按行依次对.csv文件读取内容,那么如何进行呢? 我们来完整操作一遍,假设我们已经有了一个.csv文件. # 1.导入包 import pandas as pd # 2读入数据 readFile = pd.read_csv('输出路径',encoding='gb2312') for record in readFile.values: print(record) 至此就完成了整个过程 如果有Nan怎么处理呢? 我们可以在readFile后面加入以下内容: readFile
-
pandas 条件搜索返回列表的方法
pandas中常用的一件事情就是对特定条件进行搜索,那么这里介绍使用pandas搜索方式,本案例使用的pandas是anaconda中的,可以下载任意的anaconda进行安装都会带有. 首先导入包 import pandas as pd import os 然后需要构建一个csv文件存上文件.比如我们有一个叫test.csv的文件,文件有三个列的表头,id.name.address我们想知道一个人的名字的id与地址就可以写成 test_csv = pd.read_csv('/test.csv'
-
python pandas生成时间列表
python生成一个日期列表 首先导入pandas import pandas as pd def get_date_list(begin_date,end_date): date_list = [x.strftime('%Y-%m-%d') for x in list(pd.date_range(start=begin_date, end=end_date))] return date_list ### 可以测试 print(get_date_list('2018-06-01','2018-0
-
Pandas将列表(List)转换为数据框(Dataframe)
Python中将列表转换成为数据框有两种情况:第一种是两个不同列表转换成一个数据框,第二种是一个包含不同子列表的列表转换成为数据框. 第一种:两个不同列表转换成为数据框 from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[5,6,7,8]#列表b c={"a" : a, "b" : b}#将列表a,b转换成字典 data=DataFrame(c)#将字典转换成为数据框 print(data) 输出的结
-
R语言列表和数据框的具体使用
目录 1.列表 1.1创建 1.2 访问 1.3 注意 2.数据框 2.1 创建 2.2 访问 1.列表 列表“list”是一种比较的特别的对象集合,不同的序号对于不同的元素,当然元素的也可以是不同类型的,那么我们用R语言先简单来构造一个列表. 1.1创建 > a<-c(1:20) > b<-matrix(1:20,4,5) > mlist<-list(a,b) > mlist [[1]] [1] 1 2 3 4 5 6 7 8 9 10 11
-
pandas数据框,统计某列数据对应的个数方法
现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个 好了,我给的解决方法如下: #!/bin/python #-*-coding:UTF-8-*- import pandas as pd import numpy as np dfidspec = pd.read_table("one.txt")#这个是对应关系的文件 dfmgs = pd.read_tabl
-
Pandas数据分析-pandas数据框的多层索引
目录 前言 创建多层索引 多层索引操作 索引名称的查看 索引的层级 索引内容的查看 数据查询 数据分组 前言 pandas数据框针对高维数据,也有多层索引的办法去应对.多层数据一般长这个样子 可以看到AB两大列,下面又有xy两小列. 行有abc三行,又分为onetwo两小行. 在分组聚合的时候也会产生多层索引,下面演示一下. 导入包和数据: import numpy as np import pandas as pd df=pd.read_excel('team.xlsx') 分组聚合: df.
-
Pandas 数据框增、删、改、查、去重、抽样基本操作方法
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p
-
Python Pandas list列表数据列拆分成多行的方法实现
1.实现的效果 示例代码: df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[458]: A B 0 1 [1, 2] 1 2 [1, 2] 拆分成多行的效果: A B 0 1 1 1 1 2 3 2 1 4 2 2 2.拆分成多行的方法 1)通过apply和pd.Series实现 容易理解,但在性能方面不推荐. df.set_index('A').B.apply(pd.Series).stack().reset_ind
-
Pandas读取MySQL数据到DataFrame的方法
方法一: #-*- coding:utf-8 -*- from sqlalchemy import create_engine class mysql_engine(): user='******' passwd='******' host='******' port = '******' db_name='******' engine = create_engine('mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user,passwd,ho
-
R语言 实现将数据框中的字符类型数字转换为数值
场景1 我现在有一个数据框datexpr,里面的数字都是以字符型表示的,像这样 > datexpr[1,1] [1] " 1.143773961" 现在我想把这个数据框中的字符型数字全部转为数值型数字 使用下面语句即可 datexpr2=as.data.frame(lapply(datexpr,as.numeric)) 现在再次查看,就是数值型啦,整个数据框中的内容也都是数值型的啦 > datexpr2[1,1] [1] 1.143774 场景2 我现在有一个数据框date
-
读Json文件生成pandas数据框详情
目录 前言 records格式 index格式 columns 类型 values格式 split 参数示例 压缩与编码 前言 本文讲解如何加载json文件或字符串为pandas数据框.pandas把json数据分成几种典型类型,希望对你实际数据应用开发有所启示. 有时可能需要转换json文件位pandas数据框.使用pandas内置的read_json()函数很容易实现, 其语法如下: read_json(‘path’, orient=’index’) path: json文件的路径 orie
-
R语言数据框中的负索引介绍
以R语言自带的mtcars数据框为例: 这是原始的mtcars数据: 这里只列出了前面几行数据. 然后负索引mtcars[,-2:-3],得到的结果 删除了第二列和第三列数据 所以R语言数据框中的负索引是指删除数据框中对应的列(或者行) ps:这和Python里面的规则好像不太一样,Python里的负索引好像是指倒数第几列(或者第几行),这里这两个软件区别还挺大的~~写个笔记提醒一下自己~ 补充:R语言中的负整数索引 看代码吧~ > x<-matrix(c(1,2,3,4,5,6,7,8,9)
随机推荐
- ThinkPHP5联合(关联)查询、多条件查询与聚合查询实例详解
- Lua中计算、执行字符串中Lua代码的方法
- 浅谈sass在vue注意的地方
- 比较漂亮的批处理进度条效果代码
- iOS实现自定义日期选择器示例
- iOS10语音识别框架SpeechFramework应用详解
- C语言入门之指针用法教程
- jquery.cvtooltip.js 基于jquery的气泡提示插件
- PHP中集成PayPal标准支付的实现方法分享
- 整理Python最基本的操作字典的方法
- js实现百度地图同时显示多个路书效果
- JavaScript学习笔记(十七)js 优化
- JS实现仿google、百度搜索框输入信息智能提示的实现方法
- 深入分析javascript中的错误处理机制
- VBS教程:函数-IsNumeric 函数
- jquery事件preventDefault()方法用法实例
- 10个基于Jquery的幻灯片插件教程
- 轻松实现Android仿淘宝地区选择功能
- 对setInterval在火狐和chrome切换标签产生奇怪的效果之探索,与解决方案!
- Koa2 之文件上传下载的示例代码