python-地图可视化组件folium的操作

folium是python的一个用来绘制地图,并在地图上打点,画圈,做颜色标记的工具类。简单易学,和pandas可以很好的融合,是居家必备良品。

一 基本功能演示

import folium
import webbrowser
m=folium.Map(location=[40.009867,116.485994],zoom_start=10) # 绘制地图,确定聚焦点
folium.Marker([40.2,116.7],popup='<b>浮标上面的那个文字</b>').add_to(m) # 定一个点,放到地图m上
folium.Marker([40.22,116.72],popup='<b>浮标上面的那个文字</b>',icon=folium.Icon(color='red')).add_to(m)
# 把浮标变成红色
folium.Marker([40.24,116.74],popup='<b>浮标上面的那个文字</b>',icon=folium.Icon(color='green',icon='info-sign')).add_to(m)
# 浮标改图样
#标记一个空心的圈
folium.Circle(
 location=[40.2,117.7],
 radius=10000,
 color='crimson',
 popup='popup',
 fill=False
).add_to(m)
#标记一个实心圆
folium.CircleMarker(
 location=[39.2,117.7],
 radius=100,
 popup='popup',
 color='#DC143C',#圈的颜色
 fill=True,
 fill_color='#6495ED' #填充颜色
).add_to(m)
m.save('f1.html')
webbrowser.open('f1.html')

另外,folium还支持交互,比如鼠标点击的地方显示经纬度,或者直接在点击过的地方标记一个icon

import folium
import webbrowser as wb
# 地图上悬浮显示经纬度
m = folium.Map(
 location=[36.68159, 117.103565],
 zoom_start=10
)
m.add_child(folium.LatLngPopup())
# 手动打点功能
m.add_child(
 folium.ClickForMarker(popup='Waypoint')
)
m.save('f2.html')
wb.open('f2.html')

二 使用folium绘制散点图,热力图

热力图 ,现实中数据的量级不好控制,有时候用folium画出的热力图,效果往往不是太好。

import numpy as np
import pandas as pd
import seaborn as sns
import folium
import webbrowser
from folium.plugins import HeatMap
#导入数据集:
posi = pd.read_excel("D:/Python/File/Cities2015.xlsx")
posi = posi.dropna()
#生成所需要的数组格式数据:
lat = np.array(posi["lat"][0:len(posi)])
lon = np.array(posi["lon"][0:len(posi)])
pop = np.array(posi["pop"][0:len(posi)],dtype=float)
gdp = np.array(posi["GDP"][0:len(posi)],dtype=float)
data1 = [[lat[i],lon[i],pop[i]] for i in range(len(posi))]
#创建以高德地图为底图的密度图:
map_osm = folium.Map(
 location=[35,110],
 zoom_start=5,
 tiles='http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}',
 attr="&copy; <a href="http://ditu.amap.com/" rel="external nofollow" >高德地图</a>"
 )
#创建以腾讯地图为底图的密度图:
map_osm = folium.Map(
 location=[35,110],
 zoom_start=5,
 tiles='http://rt{s}.map.gtimg.com/realtimerender?z={z}&x={x}&y={y}&type=vector&style=0',
 attr="&copy; <a href="http://map.qq.com/" rel="external nofollow" >腾讯地图</a>"
 )
#生成交互式地图:
HeatMap(data1).add_to(map_osm)
file_path = r"D:/Python/Image/People.html"
map_osm.save(file_path)
webbrowser.open(file_path)

folium的散点图更适合作展示,考虑到加载的顺畅性,不建议读取太大的数据,另外其组件可能会读一些外网的js,如果所在的网络不能访问google可能效果无法展示。解决办法是把里面的js地址替换成国内的镜像。

import pandas as pd
import numpy as np
import os
import folium
from folium import plugins
import webbrowser
import geopandas as gp
#数据导入:
full = pd.read_excel("D:/Python/File/Cities2015.xlsx")
full = full.dropna()
#创建地图对象:
schools_map = folium.Map(location=[full['lat'].mean(), full['lon'].mean()], zoom_start=10)
marker_cluster = plugins.MarkerCluster().add_to(schools_map)
#标注数据点:
for name,row in full.iterrows():
 folium.Marker([row["lat"], row["lon"]], popup="{0}:{1}".format(row["cities"], row["GDP"])).add_to(marker_cluster)
#逐行读取经纬度,数值,并且打点
#folium.RegularPolygonMarker([row["lat"], row["lon"]], popup="{0}:{1}".format(row["cities"], row["GDP"]),number_of_sides=10,radius=5).add_to(marker_cluster)
schools_map.save('schools_map.html') #保存到本地
webbrowser.open('schools_map.html') #在浏览器中打开

除此之外folium还可以绘制填充图,填充图比较素颜,如下图

这里有一些官方示例,感兴趣可以看下 :

https://nbviewer.jupyter.org/github/python-visualization/folium/tree/master/examples/

补充:Python遥感可视化 — folium模块展示热力图

“本节通过folium模块来绘制全国PM2.5热力分布图,并生成对应的html文件。”

今天的遥感之美—歌曲《欧若拉》中的阿拉斯加。阿拉斯加州位于北美大陆西北端,东与加拿大接壤,另三面环北冰洋、白令海和北太平洋。卫星俯瞰神秘北极圈,阿拉斯加的山巅,谁的脸出现海角的天边(盗用歌词捂脸)。

哥伦比亚冰川位于美国阿拉斯加州,从海拔3,050米的冰原开始下降,沿着楚加奇山脉的侧翼下降,进入一个狭窄的入口,通往阿拉斯加东南部的威廉王子湾,它是世界上变化最快的冰川之一。科学家使用Landsat 4,5,7和8跟踪哥伦比亚冰川的变化已超过30年。哥伦比亚冰川是一个大型的潮水冰川,最终流入大海。

由Landsat系列卫星捕获的假彩色图像显示了自1986年以来冰川及其周围景观的变化。图像由以下传感器收集—专题制图仪(TM),增强型专题制图仪(ETM +)和陆地成像仪(OLI)—来自四种不同的Landsat卫星(4,5,7和8)。

Landsat图像结合了电磁波谱的短波红外,近红外和绿光波段。通过这种波长组合,雪和冰呈现明亮的青色,植被为绿色,云为白色或浅橙色,水体为深蓝色。暴露的基岩呈棕色,而冰川表面的岩石碎片呈灰色。

在过去三十年里,终点站向北退缩了20公里。在某些年份,终点站退缩了一公里以上,但速度不均匀。例如,终点站的运动在2000年至2006年之间停滞不前,因为大努纳塔克峰和卡丁峰(直接向西)限制了冰川的运动并将冰块固定。自20世纪80年代以来,冰川已经失去了其总厚度和体积的一半左右(译自Landsat官网)。

folium是Python中一个绘制地图的模块,并可以在地图(底图)上打点,画圈,做颜色标记的工具类。简单易学,和pandas可以很好的融合,是地图可视化的一款神器。

在命令行中直接在线安装即可,快速、简洁、方便、高效。

pip install folium

这个开源库中有许多来自OpenStreetMap、MapQuest Open、MapQuestOpen Aerial、Mapbox和Stamen的内建地图组件,而且支持使用Mapbox或Cloudmade的API密钥来定制个性化的地图组件。Folium支持GeoJSON和TopoJSON两种文件格式的叠加,也可以将数据连接到这两种文件格式的叠加层,最后可使用color-brewer配色方案创建分布图。

本节先来展示一下它的简单应用,主要以2018年1月全国1000多个PM2.5地面观测站点为例,将这些数据以热力图(heat map)的形式展现给大家,并生成相应的html文件。

代码实现:

# _*_ coding: utf-8 _*_
__author__ = 'xbr'
__date__ = '2019/1/9 15:47'

import numpy as np
import pandas as pd
import folium
import webbrowser
from folium.plugins import HeatMap

# 读取csv文件,以Dataframe形式保存
df = pd.read_csv(r"D:\data\PM25-20180101.csv")
# 获取数据个数
num = df.shape[0]
# 获取纬度
lat = np.array(df["lat"][0:num])
# 获取经度
lon = np.array(df["lon"][0:num])
# 获取PM2.5,转化为numpy浮点型
pm25 = np.array(df["PM25"][0:num], dtype=float)
# 将数据制作成[lats, lons, weights]的形式
data1 = [[lat[i], lon[i], pm25[i]] for i in range(num)]
# 绘制Map,中心经纬度[32, 120],开始缩放程度是5倍
map_osm = folium.Map(location=[32, 120], zoom_start=5)
# 将热力图添加到前面建立的map里
HeatMap(data1).add_to(map_osm)

file_path = r"D:\AirQualityMap.html"
# 保存为html文件
map_osm.save(file_path)
# 默认浏览器打开
webbrowser.open(file_path)

结果图:

对结果图局部放大:

对结果图局部放大:

缩小后全景图:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • 详解用pyecharts Geo实现动态数据热力图城市找不到问题解决

    pyecharts 是一个用于生成 Echarts 图表的类库. Echarts 是百度开源的一个数据可视化 JS 库.主要用于数据可视化. 本文主要是用pycharts中的Geo绘制中国地图,在图中显示出各个地区的人均销售额 传入的数据形如:[('上海',30), ('北京',50), ... ...] li=[] for i,row in filtered.iterrows(): li.append((row['city'],int(row['per_capita']))) geo = Ge

  • 详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)

    首先安装对应的python模块 $ pip install pyecharts==0.5.10 $ pip install echarts-countries-pypkg $ pip install echarts-china-provinces-pypkg $ pip install echarts-china-cities-pypkg $ pip install echarts-china-counties-pypkg 世界地图 from pyecharts import Map value

  • Python绘制热力图示例

    本文实例讲述了Python绘制热力图操作.分享给大家供大家参考,具体如下: 示例一: # -*- coding: utf-8 -*- from pyheatmap.heatmap import HeatMap import numpy as np N = 10000 X = np.random.rand(N) * 255 # [0, 255] Y = np.random.rand(N) * 255 data = [] for i in range(N): tmp = [int(X[i]), in

  • python-地图可视化组件folium的操作

    folium是python的一个用来绘制地图,并在地图上打点,画圈,做颜色标记的工具类.简单易学,和pandas可以很好的融合,是居家必备良品. 一 基本功能演示 import folium import webbrowser m=folium.Map(location=[40.009867,116.485994],zoom_start=10) # 绘制地图,确定聚焦点 folium.Marker([40.2,116.7],popup='<b>浮标上面的那个文字</b>').add

  • Python利用folium实现地图可视化

    folium的简介 用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化.Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示.它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记. 这个开源库中有许多来自OpenStreetMap.MapQuest Open.MapQuestOpen Aerial.Mapbox和Stamen的内建地图元件,而且支持使用Mapbox或Cloudmade的AP

  • Python地理地图可视化folium标记点弹窗设置代码(推荐)

    python代码如下: import webbrowser as wb import folium if __name__ == '__main__': loc = [30.679943, 104.067923] # 成都中心位置经纬度 map = folium.Map(location=loc, zoom_start=11, zoom_control=True, tiles='OpenStreetMap') # 默认OpenStreetMap s1 = '地理位置标记点上的弹出窗口,展示标记点

  • Python实现地图可视化folium完整过程

    目录 Folium简介 1.安装folium模块 2.安装jupyter 3.查看世界地图 4.查看中国地图 5.武汉市地图 6.添加标记 7.查找武汉科技大学 8.未解决 9.参考文章 Folium简介 Folium是一个基于leaflet.js的Python地图库,其中,Leaflet是一个非常轻的前端地图可视化库.即可以使用Python语言调用Leaflet的地图可视化能力.它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记.Folium可以让你用Py

  • Python实现地图可视化案例详解

    目录 ​前言 一.pyecharts Map Geo Bmap 二.folium 结 语 ​前言 Python的地图可视化库很多,Matplotlib库虽然作图很强大,但只能做静态地图.而我今天要讲的是交互式地图库,分别为pyecharts.folium,掌握这两个库,基本可以解决你的地图可视化需求. 一.pyecharts 首先,必须说说强大的pyecharts库,简单易用又酷炫,几乎可以制作任何图表.pyecharts有v0.5和v1两个版本,两者不兼容,最新的v1版本开始支持链式调用,采用

  • 地图可视化神器kepler.gl python接口的使用方法

    1 简介 kepler.gl作为开源地理空间数据可视化神器,也一直处于活跃的迭代开发状态下.而在前不久,kepler.gl正式发布了其2.4.0版本,下面我们就来对其重要的新特性进行介绍: 2 kepler.gl 2.4.0重要新特性 2.1 增量时间窗口 在这次更新中,为时间序列数据的可视化新增了增量时间窗口功能,在上一个版本2.3.2中,当我们的数据集带有时间类型字段时,在添加对应的Filters之后,显示出的时间窗口是这个样子的: 而在2.4.0版本中,时间窗口如图所示: 在如下图一样从默

  • python实现3D地图可视化

    基于python代码的3D地图可视化,供大家参考,具体内容如下 介绍 使用Python对地图进行3D可视化.以地图为地图,可以在三维空间对轨迹.点进行可视化. 库 我们使用了多个库: 1.gdal: 主要是用于读取地图信息,这个库在GIS中很常用,使用C++代码编写的,如果安装不了需要在pypi里面找一下对应的资源. 2.opencv: 很常用的图像处理库. 3.matplotlib: 常用的可视化库 结果 废话不多说直接上结果: 代码 直接上代码,代码很简单. from osgeo impor

  • Python实现疫情地图可视化

    一. json模块 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率. json.loads():将json格式的str转化成python的数据格式: json.loads():将python的数据格式(字典或列表)转化成json格式: # 如何将json数据解析成我们所熟悉的Python数据类型? import json # 将json格式的str转化成python的数据格式:字典 d

  • Python数据可视化实现漏斗图过程图解

    项目实现知识点: Pandas库及pyecharts库 Pandas:数据分析和处理工具. pd.read_csv():读取csv文件. pyecharts:绘图库,提供30多种图标,超过400个以上的地图文件,支持原生百度地图,为地理数据可视化提供支持. pyecharts.charts:提供了基本的图表,例如条形图.直方图等. Python数据可视化:漏斗图的制作 项目实现过程: 1.导入模块 2.打开文件 3.读取数据 4.整理数据 5.创建漏斗图 6.添加组件 7.显示漏斗并设置名称 8

  • 学会Python数据可视化必须尝试这7个库

    目录 一.Seaborn 二.Plotly 三.Geoplotlib 四.Gleam 五.ggplot 六.Bokeh 七.Missingo 一.Seaborn Seaborn 建于 matplotlib 库的之上.它有许多内置函数,使用这些函数,只需简单的代码行就可以创建漂亮的绘图.它提供了多种高级的可视化绘图和简单的语法,如方框图.小提琴图.距离图.关节图.成对图.热图等. 安装 ip install seaborn 主要特征: 可用于确定两个变量之间的关系. 在分析单变量或双变量分布时进行

随机推荐