浅谈keras中Dropout在预测过程中是否仍要起作用

因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过。其中Dropout这个坑,我记忆犹新。

一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能。

更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样。

假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1000个神经元里随机丢弃了200个神经元,在n+1个迭代周期内,会在这1000个神经元里(不是在剩余得800个)重新随机丢弃200个神经元。

训练过程中,使用Dropout,其实就是对部分权重和偏置在某次迭代训练过程中,不参与计算和更新而已,并不是不再使用这些权重和偏置了(预测时,会使用全部的神经元,包括使用训练时丢弃的神经元)。

也就是说在预测过程中完全没有Dropout什么事了,他只是在训练时有用,特别是针对训练集比较小时防止过拟合非常有用。

补充知识:TensorFlow直接使用ckpt模型predict不用restore

我就废话不多说了,大家还是直接看代码吧~

# -*- coding: utf-8 -*-
# from util import *
import cv2
import numpy as np
import tensorflow as tf
# from tensorflow.python.framework import graph_util
import os

os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
image_path = './8760.pgm'

input_checkpoint = './model/xu_spatial_model_1340.ckpt'

sess = tf.Session()
saver = tf.train.import_meta_graph(input_checkpoint + '.meta')
saver.restore(sess, input_checkpoint)

# input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
input_image_tensor = sess.graph.get_tensor_by_name("coef_input:0")
is_training = sess.graph.get_tensor_by_name('is_training:0')
batch_size = sess.graph.get_tensor_by_name('batch_size:0')
# 定义输出的张量名称
output_tensor_name = sess.graph.get_tensor_by_name("xuNet/logits:0") # xuNet/Logits/logits
image = cv2.imread(image_path, 0)
# 读取测试图片
out = sess.run(output_tensor_name, feed_dict={input_image_tensor: np.reshape(image, (1, 512, 512, 1)),
                       is_training: False,
                       batch_size: 1})
print(out)

ckpt模型中的所有节点名称,可以这样查看

[n.name for n in tf.get_default_graph().as_graph_def().node]

以上这篇浅谈keras中Dropout在预测过程中是否仍要起作用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈keras 模型用于预测时的注意事项

    为什么训练误差比测试误差高很多? 一个Keras的模型有两个模式:训练模式和测试模式.一些正则机制,如Dropout,L1/L2正则项在测试模式下将不被启用. 另外,训练误差是训练数据每个batch的误差的平均.在训练过程中,每个epoch起始时的batch的误差要大一些,而后面的batch的误差要小一些.另一方面,每个epoch结束时计算的测试误差是由模型在epoch结束时的状态决定的,这时候的网络将产生较小的误差. [Tips]可以通过定义回调函数将每个epoch的训练误差和测试误差并作图,

  • 使用Keras预训练好的模型进行目标类别预测详解

    前言 最近开始学习深度学习相关的内容,各种书籍.教程下来到目前也有了一些基本的理解.参考Keras的官方文档自己做一个使用application的小例子,能够对图片进行识别,并给出可能性最大的分类. 闲言少叙,开始写代码 环境搭建相关就此省去,网上非常多.我觉得没啥难度 from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.res

  • 解决Keras中循环使用K.ctc_decode内存不释放的问题

    如下一段代码,在多次调用了K.ctc_decode时,会发现程序占用的内存会越来越高,执行速度越来越慢. data = generator(...) model = init_model(...) for i in range(NUM): x, y = next(data) _y = model.predict(x) shape = _y.shape input_length = np.ones(shape[0]) * shape[1] ctc_decode = K.ctc_decode(_y,

  • Keras 加载已经训练好的模型进行预测操作

    使用Keras训练好的模型用来直接进行预测,这个时候我们该怎么做呢?[我这里使用的就是一个图片分类网络] 现在让我来说说怎么样使用已经训练好的模型来进行预测判定把 首先,我们已经又有了model模型,这个模型被保存为model.h5文件 然后我们需要在代码里面进行加载 model = load_model("model.h5") 假设我们自己已经写好了一个load_data函数[load_data最好是返回已经通过了把图片转成numpy的data,以及图片对应的label] 然后我们先

  • 浅谈keras中Dropout在预测过程中是否仍要起作用

    因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过.其中Dropout这个坑,我记忆犹新. 一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能. 更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样. 假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1

  • 浅谈keras的深度模型训练过程及结果记录方式

    记录训练过程 history=model.fit(X_train, Y_train, epochs=epochs,batch_size=batch_size,validation_split=0.1) 将训练过程记录在history中 利用时间记录模型 import time model_id = np.int64(time.strftime('%Y%m%d%H%M', time.localtime(time.time()))) model.save('./VGG16'+str(model_id

  • 浅谈springfox-swagger原理解析与使用过程中遇到的坑

    swagger简介 swagger确实是个好东西,可以跟据业务代码自动生成相关的api接口文档,尤其用于restful风格中的项目,开发人员几乎可以不用专门去维护rest api,这个框架可以自动为你的业务代码生成restfut风格的api,而且还提供相应的测试界面,自动显示json格式的响应.大大方便了后台开发人员与前端的沟通与联调成本. springfox-swagger简介 签于swagger的强大功能,java开源界大牛spring框架迅速跟上,它充分利用自已的优势,把swagger集成

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • 浅谈keras中的目标函数和优化函数MSE用法

    mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean() model = Sequential() model.add(Dense(64, init='uniform', input_dim=10)) model.add(Activation('tanh')) model.add(Activation('softmax')) sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, ne

  • 浅谈keras保存模型中的save()和save_weights()区别

    今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别. 我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5.同样是h5文件用save()和save_weight()保存效果是不一样的. 我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络: inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64,

  • 浅谈keras中的Merge层(实现层的相加、相减、相乘实例)

    [题目]keras中的Merge层(实现层的相加.相减.相乘) 详情请参考: Merge层 一.层相加 keras.layers.Add() 添加输入列表的图层. 该层接收一个相同shape列表张量,并返回它们的和,shape不变. Example import keras input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.la

  • 浅谈keras中的batch_dot,dot方法和TensorFlow的matmul

    概述 在使用keras中的keras.backend.batch_dot和tf.matmul实现功能其实是一样的智能矩阵乘法,比如A,B,C,D,E,F,G,H,I,J,K,L都是二维矩阵,中间点表示矩阵乘法,AG 表示矩阵A 和G 矩阵乘法(A 的列维度等于G 行维度),WX=Z import keras.backend as K import tensorflow as tf import numpy as np w = K.variable(np.random.randint(10,siz

  • 浅谈keras中loss与val_loss的关系

    loss函数如何接受输入值 keras封装的比较厉害,官网给的例子写的云里雾里, 在stackoverflow找到了答案 You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function). def custom_loss_wrapper(input_

随机推荐