关于Python可视化Dash工具之plotly基本图形示例详解

Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景。

本文借助Plotly Express提供的几个样例库进行散点图、折线图、饼图、柱状图、气泡图、桑基图、玫瑰环图、堆积图、二维面积图、甘特图等基本图形的实现。

代码示例

import plotly.express as px
df = px.data.iris()
#Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species','species_id'],dtype='object')
#   sepal_length sepal_width ...  species species_id
# 0       5.1     3.5 ...   setosa      1
# 1       4.9     3.0 ...   setosa      1
# 2       4.7     3.2 ...   setosa      1
# ..      ...     ... ...    ...     ...
# 149      5.9     3.0 ... virginica      3
# plotly.express.scatter(data_frame=None, x=None, y=None,
# color=None, symbol=None, size=None,
# hover_name=None, hover_data=None, custom_data=None, text=None,
# facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None,
# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,
# animation_frame=None, animation_group=None,
# category_orders=None, labels=None, orientation=None,
# color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None,
# range_color=None, color_continuous_midpoint=None,
# symbol_sequence=None, symbol_map=None, opacity=None,
# size_max=None, marginal_x=None, marginal_y=None,
# trendline=None, trendline_color_override=None,
# log_x=False, log_y=False, range_x=None, range_y=None,
# render_mode='auto', title=None, template=None, width=None, height=None)
# 以sepal_width,sepal_length制作标准散点图
fig = px.scatter(df, x="sepal_width", y="sepal_length")
fig.show()

#以鸢尾花类型-species作为不同颜色区分标志 color
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()

#追加petal_length作为散点大小,变位气泡图 size
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         color="species",size='petal_length')
fig.show()

#追加petal_width作为额外列,在悬停工具提示中显示为额外数据 hover_data
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         color="species", size='petal_length',
         hover_data=['petal_width'])
fig.show()

#以鸢尾花类型-species区分散点的形状 symbol
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species",
         size='petal_length',
         hover_data=['petal_width'])
fig.show()

#追加petal_width作为额外列,在悬停工具提示中以粗体显示。 hover_name
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species",
         size='petal_length',
         hover_data=['petal_width'], hover_name="species")
fig.show()

#以鸢尾花类型编码-species_id作为散点的文本值 text
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species",
         size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id")
fig.show()

#追加图表标题 title
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鸢尾花分类展示")
fig.show()

#以鸢尾花类型-species作为动画播放模式 animation_frame
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鸢尾花分类展示",
         animation_frame="species")
fig.show()

#固定X、Y最大值最小值范围range_x,range_y,防止动画播放时超出数值显示
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鸢尾花分类展示",
         animation_frame="species",range_x=[1.5,4.5],range_y=[4,8.5])
fig.show()

df = px.data.gapminder().query("country=='China'")
# Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap', 'iso_alpha', 'iso_num'],dtype='object')
#   country continent year ...  gdpPercap iso_alpha iso_num
# 288  China   Asia 1952 ...  400.448611    CHN   156
# 289  China   Asia 1957 ...  575.987001    CHN   156
# 290  China   Asia 1962 ...  487.674018    CHN   156
# plotly.express.line(data_frame=None, x=None, y=None,
# line_group=None, color=None, line_dash=None,
# hover_name=None, hover_data=None, custom_data=None, text=None,
# facet_row=None, facet_col=None, facet_col_wrap=0,
# facet_row_spacing=None, facet_col_spacing=None,
# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,
# animation_frame=None, animation_group=None,
# category_orders=None, labels=None, orientation=None,
# color_discrete_sequence=None, color_discrete_map=None,
# line_dash_sequence=None, line_dash_map=None,
# log_x=False, log_y=False,
# range_x=None, range_y=None,
# line_shape=None, render_mode='auto', title=None,
# template=None, width=None, height=None)
# 显示中国的人均寿命
fig = px.line(df, x="year", y="lifeExp", title='中国人均寿命')
fig.show()

# 以不同颜色显示亚洲各国的人均寿命
df = px.data.gapminder().query("continent == 'Asia'")
fig = px.line(df, x="year", y="lifeExp", color="country",
       hover_name="country")
fig.show()

# line_group="country" 达到按国家去重的目的
df = px.data.gapminder().query("continent != 'Asia'") # remove Asia for visibility
fig = px.line(df, x="year", y="lifeExp", color="continent",
       line_group="country", hover_name="country")
fig.show()

# bar图
df = px.data.gapminder().query("country == 'China'")
fig = px.bar(df, x='year', y='lifeExp')
fig.show()

df = px.data.gapminder().query("continent == 'Asia'")
fig = px.bar(df, x='year', y='lifeExp',color="country" )
fig.show()

df = px.data.gapminder().query("country == 'China'")
fig = px.bar(df, x='year', y='pop',
       hover_data=['lifeExp', 'gdpPercap'], color='lifeExp',
       labels={'pop':'population of China'}, height=400)
fig.show()

fig = px.bar(df, x='year', y='pop',
       hover_data=['lifeExp', 'gdpPercap'], color='pop',
       labels={'pop':'population of China'}, height=400)
fig.show()

df = px.data.medals_long()
# #     nation  medal count
# # 0 South Korea  gold   24
# # 1    China  gold   10
# # 2    Canada  gold   9
# # 3 South Korea silver   13
# # 4    China silver   15
# # 5    Canada silver   12
# # 6 South Korea bronze   11
# # 7    China bronze   8
# # 8    Canada bronze   12
fig = px.bar(df, x="nation", y="count", color="medal",
       title="Long-Form Input")
fig.show()

# 气泡图
df = px.data.gapminder()
# X轴以对数形式展现
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp",
         size="pop",
         color="continent",hover_name="country",
         log_x=True, size_max=60)
fig.show()

# X轴以标准形式展现
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp",
         size="pop",
         color="continent",hover_name="country",
         log_x=False, size_max=60)
fig.show()

# 饼状图
px.data.gapminder().query("year == 2007").groupby('continent').count()
#      country year lifeExp pop gdpPercap iso_alpha iso_num
# continent
# Africa     52  52    52  52     52     52    52
# Americas    25  25    25  25     25     25    25
# Asia      33  33    33  33     33     33    33
# Europe     30  30    30  30     30     30    30
# Oceania     2   2    2  2     2     2    2
df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
fig = px.pie(df, values='pop', names='country',
       title='Population of European continent')
fig.show()

df.loc[df['pop'] < 10000000, 'country'] = 'Other countries'
fig = px.pie(df, values='pop', names='country',
       title='Population of European continent',
       hover_name='country',labels='country')
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.show()

df.loc[df['pop'] < 10000000, 'country'] = 'Other countries'
fig = px.pie(df, values='pop', names='country',
       title='Population of European continent',
       hover_name='country',labels='country',
       color_discrete_sequence=px.colors.sequential.Blues)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.show()

# 二维面积图
df = px.data.gapminder()
fig = px.area(df, x="year", y="pop", color="continent",
       line_group="country")
fig.show()

fig = px.area(df, x="year", y="pop", color="continent",
       line_group="country",
       color_discrete_sequence=px.colors.sequential.Blues)
fig.show()

df = px.data.gapminder().query("year == 2007")
fig = px.bar(df, x="pop", y="continent", orientation='h',
       hover_name='country',
       text='country',color='continent')
fig.show()

# 甘特图
import pandas as pd
df = pd.DataFrame([
  dict(Task="Job A", Start='2009-01-01', Finish='2009-02-28',
     Completion_pct=50, Resource="Alex"),
  dict(Task="Job B", Start='2009-03-05', Finish='2009-04-15',
     Completion_pct=25, Resource="Alex"),
  dict(Task="Job C", Start='2009-02-20', Finish='2009-05-30',
     Completion_pct=75, Resource="Max")
])
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task",
         color="Completion_pct")
fig.update_yaxes(autorange="reversed")
fig.show()

fig = px.timeline(df, x_start="Start", x_end="Finish", y="Resource",
         color="Resource")
fig.update_yaxes(autorange="reversed")
fig.show()

# 玫瑰环图
df = px.data.tips()
#   total_bill  tip   sex smoker  day  time size
# 0     16.99 1.01 Female   No  Sun Dinner   2
# 1     10.34 1.66  Male   No  Sun Dinner   3
# 2     21.01 3.50  Male   No  Sun Dinner   3
# 3     23.68 3.31  Male   No  Sun Dinner   2
# 4     24.59 3.61 Female   No  Sun Dinner   4
fig = px.sunburst(df, path=['day', 'time', 'sex'],
         values='total_bill')
fig.show()

import numpy as np
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'],
         values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'],
                            weights=df['pop']))
fig.show()

df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'],
         values='pop',
         color='pop', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()

# treemap图
import numpy as np
df = px.data.gapminder().query("year == 2007")
df["world"] = "world" # in order to have a single root node
fig = px.treemap(df, path=['world', 'continent', 'country'],
         values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'],
                            weights=df['pop']))
fig.show()

fig = px.treemap(df, path=['world', 'continent', 'country'], values='pop',
         color='pop', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'],
                            weights=df['pop']))
fig.show()

fig = px.treemap(df, path=['world', 'continent', 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()

fig = px.treemap(df, path=[ 'continent', 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()

fig = px.treemap(df, path=[ 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()

# 桑基图
tips = px.data.tips()
fig = px.parallel_categories(tips, color="size",
               color_continuous_scale=px.colors.sequential.Inferno)
fig.show()

到此这篇关于关于Python可视化Dash工具之plotly基本图形示例详解的文章就介绍到这了,更多相关Python plotly基本图形内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python使用Plotly绘图工具绘制柱状图

    本文实例为大家分享了python使用Plotly绘图工具绘制柱状图的具体代码,供大家参考,具体内容如下 使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单的柱状图: # -*- coding: utf-8 -*- import plotly as py import plotly.graph_objs as go pyplt = py.offlin

  • 详解Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

  • python使用Plotly绘图工具绘制水平条形图

    本文实例为大家分享了python绘制水平条形图的具体代码,供大家参考,具体内容如下 水平条形图与绘制柱状图类似,大家可以先看看我之前写的博客,如何绘制柱状图 水平条形图需要在Bar函数中设置orientation= 'h' 其他的参数与柱状图相同.也可以通过设置barmode = 'stack', 绘制层叠水平条形图和瀑布式水平条形图 import plotly as py import plotly.graph_objs as go pyplt = py.offline.plot data =

  • Python实现平行坐标图的绘制(plotly)方式

    平行坐标图简介 当数据的维度超过三维时,此时数据的可视化就变得不再那么简单.为解决高维数据的可视化问题,我们可以使用平行坐标图.以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间. 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置.为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线.所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • Python数据可视化:顶级绘图库plotly详解

    有史以来最牛逼的绘图工具,没有之一 plotly是现代平台的敏捷商业智能和数据科学库,它作为一款开源的绘图库,可以应用于Python.R.MATLAB.Excel.JavaScript和jupyter等多种语言,主要使用的js进行图形绘制,实现过程中主要就是调用plotly的函数接口,底层实现完全被隐藏,便于初学者的掌握. 下面主要从Python的角度来分析plotly的绘图原理及方法: ###安装plotly: 使用pip来安装plotly库,如果机器上没有pip,需要先进行pip的安装,这里

  • 关于Python可视化Dash工具之plotly基本图形示例详解

    Plotly Express是对 Plotly.py 的高级封装,内置了大量实用.现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景. 本文借助Plotly Express提供的几个样例库进行散点图.折线图.饼图.柱状图.气泡图.桑基图.玫瑰环图.堆积图.二维面积图.甘特图等基本图形的实现. 代码示例 import plotly.express as px df = px.data.iris() #Index(['sepal_length', '

  • Python程序包的构建和发布过程示例详解

    关于我 编程界的一名小程序猿,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. 联系:hylinux1024@gmail.com 当我们开发了一个开源项目时,就希望把这个项目打包然后发布到 pypi.org 上,别人就可以通过 pip install 的命令进行安装.本文的教程来自于 Python 官方文档 , 如有不正确的地方欢迎评论拍砖. 0x00 创建项目 本文使用到的项目目录为 ➜ packaging-tuto

  • 利用Python打造一个多人聊天室的示例详解

    一.实验名称 建立聊天工具 二.实验目的 掌握Socket编程中流套接字的技术,实现多台电脑之间的聊天. 三.实验内容和要求 vii.掌握利用Socket进行编程的技术 viii.必须掌握多线程技术,保证双方可以同时发送 ix.建立聊天工具 x.可以和多个人同时进行聊天 xi.必须使用图形界面,显示双方的语录 四.实验环境 PC多台,操作系统Win7,win10(32位.64位) 具备软件python3.6 . 五.操作方法与实验步骤 服务端 1.调入多线程.与scoket包,用于实现多线程连接

  • Blender Python编程实现程序化建模生成超形示例详解

    目录 正文 什么是超形(Supershapes, Superformula) 二维超形 n1 = n2 = n3 = 1 n1 = n2 = n3 = 0.3 其他特别情况 例子 1 例子 2 例子 3 例子 4 例子 5 奇异的形状 三维超形 Blender 生成超形 详细代码和注释如下 正文 Blender 并不是唯一一款允许你为场景编程和自动化任务的3D软件; 随着每一个新版本的推出,Blender 正逐渐成为一个可靠的 CG 制作一体化解决方案,从使用油脂铅笔的故事板到基于节点的合成.

  • 对python实现二维函数高次拟合的示例详解

    在参加"数据挖掘"比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进. 在本次"数据挖掘"比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰.现在想想也挺欣慰自己在这段时间里接受新知识的能力.关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识. # coding=utf-8 import

  • Python数学建模StatsModels统计回归之线性回归示例详解

    目录 1.背景知识 1.1 插值.拟合.回归和预测 1.2 线性回归 2.Statsmodels 进行线性回归 2.1 导入工具包 2.2 导入样本数据 2.3 建模与拟合 2.4 拟合和统计结果的输出 3.一元线性回归 3.1 一元线性回归 Python 程序: 3.2 一元线性回归 程序运行结果: 4.多元线性回归 4.1 多元线性回归 Python 程序: 4.2 多元线性回归 程序运行结果: 5.附录:回归结果详细说明 1.背景知识 1.1 插值.拟合.回归和预测 插值.拟合.回归和预测

  • python编程中简洁优雅的推导式示例详解

    目录 1. 列表推导式 增加条件语句 多重循环 更多用法 2. 字典推导式 3. 集合推导式 4. 元组推导式 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] print(lis) 输出 [1, 4

  • Python基于keras训练实现微笑识别的示例详解

    目录 一.数据预处理 二.训练模型 创建模型 训练模型 训练结果 三.预测 效果 四.源代码 pretreatment.py train.py predict.py 一.数据预处理 实验数据来自genki4k 提取含有完整人脸的图片 def init_file():     num = 0     bar = tqdm(os.listdir(read_path))     for file_name in bar:         bar.desc = "预处理图片: "      

  • Python使用Crypto库实现加密解密的示例详解

    目录 一:crypto库安装 二:python使用crypto 1:crypto的加密解密组件des.py 2:crypto组件使用 知识补充 一:crypto库安装 pycrypto,pycryptodome是crypto第三方库,pycrypto已经停止更新三年了,所以不建议安装这个库:pycryptodome是pycrypto的延伸版本,用法和pycrypto 是一模一样的:所以只需要安装pycryptodome就可以了 pip install pycryptodome 二:python使

  • Python深度学习实战PyQt5布局管理项目示例详解

    目录 1. 从绝对定位到布局管理 1.1 什么是布局管理 1.2 Qt 中的布局管理方法 2. 水平布局(Horizontal Layout) 3. 垂直布局(Vertical Layout) 4. 栅格布局(Grid Layout) 5. 表格布局(Form Layout) 6. 嵌套布局 7. 容器布局 布局管理就是管理图形窗口中各个部件的位置和排列.图形窗口中的大量部件也需要通过布局管理,对部件进行整理分组.排列定位,才能使界面整齐有序.美观大方. 1. 从绝对定位到布局管理 1.1 什么

随机推荐