Go实现各类限流的方法

前 言

在开发高并发系统时,我们可能会遇到接口访问频次过高,为了保证系统的高可用和稳定性,这时候就需要做流量限制,你可能是用的 Nginx 这种来控制请求,也可能是用了一些流行的类库实现。限流是高并发系统的一大杀器,在设计限流算法之前我们先来了解一下它们是什么。

限 流

限流的目的是通过对并发访问请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理。通过对并发(或者一定时间窗口内)请求进行限速来保护系统,一旦达到限制速率则拒绝服务(定向到错误页或告知资源没有了)、排队等待(比如秒杀、评论、下单)、降级(返回兜底数据或默认数据)。

如 图:

自己魔改出来的漫画

如图上的漫画,在某个时间段流量上来了,服务的接口访问频率可能会非常快,如果我们没有对接口访问频次做限制可能会导致服务器无法承受过高的压力挂掉,这时候也可能会产生数据丢失,所以就要对其进行限流处理。

限流算法就可以帮助我们去控制每个接口或程序的函数被调用频率,它有点儿像保险丝,防止系统因为超过访问频率或并发量而引起瘫痪。我们可能在调用某些第三方的接口的时候会看到类似这样的响应头:

X-RateLimit-Limit: 60         //每秒60次请求
X-RateLimit-Remaining: 22     //当前还剩下多少次
X-RateLimit-Reset: 1612184024 //限制重置时间

上面的 HTTP Response 是通过响应头告诉调用方服务端的限流频次是怎样的,保证后端的接口访问上限。为了解决限流问题出现了很多的算法,它们都有不同的用途,通常的策略就是拒绝超出的请求,或者让超出的请求排队等待。

一般来说,限流的常用处理手段有:

  • 计数器
  • 滑动窗口
  • 漏桶
  • 令牌桶

计数器

计数器是一种最简单限流算法,其原理就是:在一段时间间隔内,对请求进行计数,与阀值进行比较判断是否需要限流,一旦到了时间临界点,将计数器清零。这个就像你去坐车一样,车厢规定了多少个位置,满了就不让上车了,不然就是超载了,被交警叔叔抓到了就要罚款的,如果我们的系统那就不是罚款的事情了,可能直接崩掉了。

  • 可以在程序中设置一个变量 count,当过来一个请求我就将这个数+1,同时记录请求时间。
  • 当下一个请求来的时候判断 count 的计数值是否超过设定的频次,以及当前请求的时间和第一次请求时间是否在 1 分钟内。
  • 如果在 1 分钟内并且超过设定的频次则证明请求过多,后面的请求就拒绝掉。
  • 如果该请求与第一个请求的间隔时间大于计数周期,且 count 值还在限流范围内,就重置 count

代码实现:

package main

import (
    "log"
    "sync"
    "time"
)

type Counter struct {
    rate  int           //计数周期内最多允许的请求数
    begin time.Time     //计数开始时间
    cycle time.Duration //计数周期
    count int           //计数周期内累计收到的请求数
    lock  sync.Mutex
}

func (l *Counter) Allow() bool {
    l.lock.Lock()
    defer l.lock.Unlock()

    if l.count == l.rate-1 {
        now := time.Now()
        if now.Sub(l.begin) >= l.cycle {
            //速度允许范围内, 重置计数器
            l.Reset(now)
            return true
        } else {
            return false
        }
    } else {
        //没有达到速率限制,计数加1
        l.count++
        return true
    }
}

func (l *Counter) Set(r int, cycle time.Duration) {
    l.rate = r
    l.begin = time.Now()
    l.cycle = cycle
    l.count = 0
}

func (l *Counter) Reset(t time.Time) {
    l.begin = t
    l.count = 0
}

func main() {
    var wg sync.WaitGroup
    var lr Counter
    lr.Set(3, time.Second) // 1s内最多请求3次
    for i := 0; i < 10; i++ {
        wg.Add(1)
        log.Println("创建请求:", i)
        go func(i int) {
          if lr.Allow() {
              log.Println("响应请求:", i)
          }
          wg.Done()
        }(i)

        time.Sleep(200 * time.Millisecond)
    }
    wg.Wait()
}

OutPut:

2021/02/01 21:16:12 创建请求: 0
2021/02/01 21:16:12 响应请求: 0
2021/02/01 21:16:12 创建请求: 1
2021/02/01 21:16:12 响应请求: 1
2021/02/01 21:16:12 创建请求: 2
2021/02/01 21:16:13 创建请求: 3
2021/02/01 21:16:13 创建请求: 4
2021/02/01 21:16:13 创建请求: 5
2021/02/01 21:16:13 响应请求: 5
2021/02/01 21:16:13 创建请求: 6
2021/02/01 21:16:13 响应请求: 6
2021/02/01 21:16:13 创建请求: 7
2021/02/01 21:16:13 响应请求: 7
2021/02/01 21:16:14 创建请求: 8
2021/02/01 21:16:14 创建请求: 9

可以看到我们设置的是每200ms创建一个请求,明显高于1秒最多3个请求的限制,运行起来之后发现编号为 2、3、4、8、9 的请求被丢弃,说明限流成功。

那么问题来了,如果有个需求对于某个接口 /query 每分钟最多允许访问 200 次,假设有个用户在第 59 秒的最后几毫秒瞬间发送 200 个请求,当 59 秒结束后 Counter 清零了,他在下一秒的时候又发送 200 个请求。那么在 1 秒钟内这个用户发送了 2 倍的请求,这个是符合我们的设计逻辑的,这也是计数器方法的设计缺陷,系统可能会承受恶意用户的大量请求,甚至击穿系统。

如下图:

这种方法虽然简单,但也有个大问题就是没有很好的处理单位时间的边界。

滑动窗口

滑动窗口是针对计数器存在的临界点缺陷,所谓 滑动窗口(Sliding window) 是一种流量控制技术,这个词出现在 TCP 协议中。滑动窗口把固定时间片进行划分,并且随着时间的流逝,进行移动,固定数量的可以移动的格子,进行计数并判断阀值。

如 图:

上图中我们用红色的虚线代表一个时间窗口(一分钟),每个时间窗口有 6 个格子,每个格子是 10 秒钟。每过 10 秒钟时间窗口向右移动一格,可以看红色箭头的方向。我们为每个格子都设置一个独立的计数器 Counter,假如一个请求在 0:45 访问了那么我们将第五个格子的计数器 +1(也是就是 0:40~0:50),在判断限流的时候需要把所有格子的计数加起来和设定的频次进行比较即可。

那么滑动窗口如何解决我们上面遇到的问题呢?来看下面的图:

当用户在0:59 秒钟发送了 200个请求就会被第六个格子的计数器记录 +200,当下一秒的时候时间窗口向右移动了一个,此时计数器已经记录了该用户发送的 200 个请求,所以再发送的话就会触发限流,则拒绝新的请求。

其实计数器就是滑动窗口啊,只不过只有一个格子而已,所以想让限流做的更精确只需要划分更多的格子就可以了,为了更精确我们也不知道到底该设置多少个格子,格子的数量影响着滑动窗口算法的精度,依然有时间片的概念,无法根本解决临界点问题

相关算法实现 github.com/RussellLuo/slidingwindow

漏 桶

漏桶算法(Leaky Bucket),原理就是一个固定容量的漏桶,按照固定速率流出水滴。用过水龙头都知道,打开龙头开关水就会流下滴到水桶里,而漏桶指的是水桶下面有个漏洞可以出水。如果水龙头开的特别大那么水流速就会过大,这样就可能导致水桶的水满了然后溢出。

如 图:

一个固定容量的桶,有水流进来,也有水流出去。对于流进来的水来说,我们无法预计一共有多少水会流进来,也无法预计水流的速度。但是对于流出去的水来说,这个桶可以固定水流出的速率(处理速度),从而达到 流量整形 和 流量控制 的效果。

代码实现:

type LeakyBucket struct {
    rate       float64 //固定每秒出水速率
    capacity   float64 //桶的容量
    water      float64 //桶中当前水量
    lastLeakMs int64   //桶上次漏水时间戳 ms

    lock sync.Mutex
}

func (l *LeakyBucket) Allow() bool {
    l.lock.Lock()
    defer l.lock.Unlock()

    now := time.Now().UnixNano() / 1e6
    eclipse := float64((now - l.lastLeakMs)) * l.rate / 1000 //先执行漏水
    l.water = l.water - eclipse                              //计算剩余水量
    l.water = math.Max(0, l.water)                           //桶干了
    l.lastLeakMs = now
    if (l.water + 1) < l.capacity {
        // 尝试加水,并且水还未满
        l.water++
        return true
    } else {
        // 水满,拒绝加水
        return false
    }
}

func (l *LeakyBucket) Set(r, c float64) {
    l.rate = r
    l.capacity = c
    l.water = 0
    l.lastLeakMs = time.Now().UnixNano() / 1e6
}

漏桶算法有以下特点:

  • 漏桶具有固定容量,出水速率是固定常量(流出请求)
  • 如果桶是空的,则不需流出水滴
  • 可以以任意速率流入水滴到漏桶(流入请求)
  • 如果流入水滴超出了桶的容量,则流入的水滴溢出(新请求被拒绝)

漏桶限制的是常量流出速率(即流出速率是一个固定常量值),所以最大的速率就是出水的速率,不能出现突发流量。

令牌桶算法

令牌桶算法(Token Bucket)是网络流量整形(Traffic Shaping)和速率限制(Rate Limiting)中最常使用的一种算法。典型情况下,令牌桶算法用来控制发送到网络上的数据的数目,并允许突发数据的发送。

我们有一个固定的桶,桶里存放着令牌(token)。一开始桶是空的,系统按固定的时间(rate)往桶里添加令牌,直到桶里的令牌数满,多余的请求会被丢弃。当请求来的时候,从桶里移除一个令牌,如果桶是空的则拒绝请求或者阻塞。

实现代码:

type TokenBucket struct {
    rate         int64 //固定的token放入速率, r/s
    capacity     int64 //桶的容量
    tokens       int64 //桶中当前token数量
    lastTokenSec int64 //桶上次放token的时间戳 s

    lock sync.Mutex
}

func (l *TokenBucket) Allow() bool {
    l.lock.Lock()
    defer l.lock.Unlock()

    now := time.Now().Unix()
    l.tokens = l.tokens + (now-l.lastTokenSec)*l.rate // 先添加令牌
    if l.tokens > l.capacity {
        l.tokens = l.capacity
    }
    l.lastTokenSec = now
    if l.tokens > 0 {
        // 还有令牌,领取令牌
        l.tokens--
        return true
    } else {
        // 没有令牌,则拒绝
        return false
    }
}

func (l *TokenBucket) Set(r, c int64) {
    l.rate = r
    l.capacity = c
    l.tokens = 0
    l.lastTokenSec = time.Now().Unix()
}

令牌桶有以下特点:

  • 令牌按固定的速率被放入令牌桶中
  • 桶中最多存放 B 个令牌,当桶满时,新添加的令牌被丢弃或拒绝
  • 如果桶中的令牌不足 N 个,则不会删除令牌,且请求将被限流(丢弃或阻塞等待)

令牌桶限制的是平均流入速率(允许突发请求,只要有令牌就可以处理,支持一次拿3个令牌,4个令牌...),并允许一定程度突发流量。

小 结

目前常用的是令牌桶这种,本文介绍了几种常见的限流算法实现

到此这篇关于Go实现各类限流的文章就介绍到这了,更多相关Go实现各类限流内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • golang接口IP限流,IP黑名单,IP白名单的实例

    增加中间件 可以选择普通模式和LUA脚本模式,建议选择普通模式,实际上不需要控制的那么精确. package Middlewares import ( "github.com/gin-gonic/gin" "strconv" "time" "voteapi/pkg/app/response" "voteapi/pkg/gredis" "voteapi/pkg/util" ) const

  • 详解Golang实现请求限流的几种办法

    简单的并发控制 利用 channel 的缓冲设定,我们就可以来实现并发的限制.我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要).让并发的 goroutine在执行完成后把这个 channel 里的东西给读走.这样整个并发的数量就讲控制在这个 channel的缓冲区大小上. 比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器. chLimit := make(chan bool, 1) 然后在并发执行的地方,每创建一个新

  • Golang 限流器的使用和实现示例

    限流器是服务中非常重要的一个组件,在网关设计.微服务.以及普通的后台应用中都比较常见.它可以限制访问服务的频次和速率,防止服务过载,被刷爆. 限流器的算法比较多,常见的比如令牌桶算法.漏斗算法.信号量等.本文主要介绍基于漏斗算法的一个限流器的实现.文本也提供了其他几种开源的实现方法. 基于令牌桶的限流器实现 在golang 的官方扩展包 time 中(github/go/time),提供了一个基于令牌桶算法的限流器的实现. 原理 令牌桶限流器,有两个概念: 令牌:每次都需要拿到令牌后,才可以访问

  • Golang实现请求限流的几种办法(小结)

    在开发高并发系统时,有三把利器用来保护系统:缓存.降级和限流.那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了. 简单的并发控制 利用 channel 的缓冲设定,我们就可以来实现并发的限制.我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要).让并发的 goroutine在执行完成后把这个 channel 里的东西给读走.这样整个并发的数量就讲控制在这个 channel的缓冲区大小上. 比如我们可以用一个 bool

  • Golang模拟令牌桶进行对访问的限流方式

    利用channel进行模拟令牌桶对访问进行限流 func FW(max int,duration time.Duration){ //定义一个channel ,进行初始化 contain := make(chan bool , max) for i := 0 ; i < max ; i ++{ contain <- true//写入channel } go func() {//开启一个线程 for { contain <- true time.Sleep(duration) } }()

  • Go实现各类限流的方法

    前 言 在开发高并发系统时,我们可能会遇到接口访问频次过高,为了保证系统的高可用和稳定性,这时候就需要做流量限制,你可能是用的 Nginx 这种来控制请求,也可能是用了一些流行的类库实现.限流是高并发系统的一大杀器,在设计限流算法之前我们先来了解一下它们是什么. 限 流 限流的目的是通过对并发访问请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务.排队或等待.降级等处理.通过对并发(或者一定时间窗口内)请求进行限速来保护系统,一旦达到限制速率则拒绝服务(定

  • Nginx使用limit_req_zone对同一IP访问进行限流的方法

    nginx可以使用ngx_http_limit_req_module模块的limit_req_zone指令进行限流访问,防止用户恶意攻击刷爆服务器.ngx_http_limit_req_module模块是nginx默认安装的,所以直接配置即可. 首先,在nginx.conf文件中的http模块下配置 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s; 说明:区域名称为one(自定义),占用空间大小为10m,平均处理的请求频率不能超

  • SpringBoot服务上实现接口限流的方法

    Sentinel是阿里巴巴开源的限流器熔断器,并且带有可视化操作界面. 在日常开发中,限流功能时常被使用,用于对某些接口进行限流熔断,譬如限制单位时间内接口访问次数:或者按照某种规则进行限流,如限制ip的单位时间访问次数等. 之前我们已经讲过接口限流的工具类ratelimter可以实现令牌桶的限流,很明显sentinel的功能更为全面和完善.来看一下sentinel的简介: https://github.com/spring-cloud-incubator/spring-cloud-alibab

  • 基于Redis实现分布式应用限流的方法

    限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务. 前几天在DD的公众号,看了一篇关于使用 瓜娃 实现单应用限流的方案 -->原文,参考<redis in action> 实现了一个jedis版本的,都属于业务层次限制. 实际场景中常用的限流策略: Nginx接入层限流 按照一定的规则如帐号.IP.系统调用逻辑等在Nginx层面做限流 业务应用系统限流 通过业务代码控制流量这个流量可以被称为信号量,可以理解成是一种锁,它

  • 使用Java实现Redis限流的方法

    1.概述   限流的含义是在单位时间内确保发往某个模块的请求数量小于某个数值,比如在实现秒杀功能时,需要确保在10秒内发往支付模块的请求数量小于500个.限流的作用是防止某个段时间段内的请求数过多,造成模块因高并发而不可用. 2.zset有序集合相关命令与限流   zset也叫有序集合,是Redis的一种数据类型,在其中每个值(value)都会有一个对应的score参数,以此来描述该值的权重分值.可以通过如下形式的命令向zset有序集合里添加元素: zadd key score value   

  • 基于redis+lua进行限流的方法

    1,首先我们redis有很多限流的算法(比如:令牌桶,计数器,时间窗口)等,但是都有一定的缺点,令牌桶在单项目中相对来说比较稳定,但是在分布式集群里面缺显的不那么友好,这时候,在分布式里面进行限流的话,我们则可以使用redis+lua脚本进行限流,能抗住亿级并发 2,下面说说lua+redis进行限流的做法开发环境:idea+redis+lua第一:打开idea的插件市场,然后搜索lua,点击右边的安装,然后安装好了,重启即可 第二:写一个自定义限流注解 package com.sport.sp

  • nginx 如何实现读写限流的方法

    nginx 读写限流 前段时间,开发了一个供外部调用的api,领导说要限流,请求单个IP,每秒50读次,写10次 万能的nginx,几行配置搞定 # 先定义好规则,需要写在server外面 limit_req_zone $binary_remote_addr $uri zone=api_write:20m rate=10r/s; # 写 limit_req_zone $binary_remote_addr $uri zone=api_read:20m rate=50r/s; # 读 # 把需要限

  • 使用nginx实现分布式限流的方法

    1.前言 一般对外暴露的系统,在促销或者黑客攻击时会涌来大量的请求,为了保护系统不被瞬间到来的高并发流量给打垮, 就需要限流 . 本文主要阐述如何用nginx 来实现限流. 听说 Hystrix 也可以, 各位有兴趣可以去研究哈 . 2.首先部署一个对外暴露接口的程序 我这里部署的是一个spring boot 项目 里面暴露了如下接口, 很简单 暴露了一个 get 请求返回 hello world 的restful 接口. 将此程序部署到 linux 服务器上. 部署步奏不再赘述, 自行百度 s

  • 利用Redis实现访问次数限流的方法详解

    假设我们要做一个业务需求,这个需求就是限制用户的访问频次.比如1分钟内只能访问20次,10分钟内只能访问200次.因为是用户维度的场景,性能肯定是要首先考虑,那么适合这个场景的非Redis莫属. 最简单的实现,莫过于只是用incr进行计数操作,于是有了下面的代码: long count = redisTemplate.opsForValue().increment("user:1:60"); if (count > maxLimitCount) { throw new Limit

  • nginx使用内置模块配置限速限流的方法实例

    有时候 NGINX 面对一些特殊的场景时,需要进行一定的限速限流的配置,比如一个官网,可能前端静态文件是非常小的,但是同时配置的还有一些 apk 包,这些包如果不做任何限制,可能会形成比较大的负载或者带宽的压力,我这边碰到了,今天就来针对这个问题处理一下. 没有限制之前,对应的包下载速度如下: 添加如下配置,进行一定的限制: http { ...#省略 limit_conn_zone $binary_remote_addr zone=addr:10m; ...#省略 } server { lis

随机推荐