解决Pytorch修改预训练模型时遇到key不匹配的情况

一、Pytorch修改预训练模型时遇到key不匹配

最近想着修改网络的预训练模型vgg.pth,但是发现当我加载预训练模型权重到新建的模型并保存之后。

在我使用新赋值的网络模型时出现了key不匹配的问题

#加载后保存(未修改网络)
base_weights = torch.load(args.save_folder + args.basenet)
ssd_net.vgg.load_state_dict(base_weights)
torch.save(ssd_net.state_dict(), args.save_folder + 'ssd_base' + '.pth')
# 将新保存的网络代替之前的预训练模型
    ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
    net = ssd_net
    ...
    if args.resume:
        ...
    else:
        base_weights = torch.load(args.save_folder + args.basenet)
        #args.basenet为ssd_base.pth
        print('Loading base network...')
        ssd_net.vgg.load_state_dict(base_weights)

此时会如下出错误:

Loading base network…
Traceback (most recent call last):
File “train.py”, line 264, in
train()
File “train.py”, line 110, in train
ssd_net.vgg.load_state_dict(base_weights)

RuntimeError: Error(s) in loading state_dict for ModuleList:
Missing key(s) in state_dict: “0.weight”, “0.bias”, … “33.weight”, “33.bias”.
Unexpected key(s) in state_dict: “vgg.0.weight”, “vgg.0.bias”, … “vgg.33.weight”, “vgg.33.bias”.

说明之前的预训练模型 key参数为"0.weight", “0.bias”,但是经过加载保存之后变为了"vgg.0.weight", “vgg.0.bias”

我认为是因为本身的模型定义文件里self.vgg = nn.ModuleList(base)这一句。

现在的问题是因为自己定义保存的模型key参数多了一个前缀。

可以通过如下语句进行修改,并加载

from collections import OrderedDict   #导入此模块
base_weights = torch.load(args.save_folder + args.basenet)
print('Loading base network...')
new_state_dict = **OrderedDict()**
for k, v in base_weights.items():
    name = k[4:]   # remove `vgg.`,即只取vgg.0.weights的后面几位
    new_state_dict[name] = v
    ssd_net.vgg.load_state_dict(new_state_dict) 

此时就不会再出错了。

参考了这个篇。修改一下就可以应用到自己的模型啦。

//www.jb51.net/article/214214.htm

二、pytorch加载预训练模型遇到的问题:KeyError: ‘bn1.num_batches_tracked‘

最近在使用pytorch1.0加载resnet预训练模型时,遇到的一个问题,在此记录一下。

KeyError: 'layer1.0.bn1.num_batches_tracked'

其实是使用的版本的问题,pytorch0.4.1之后在BN层加入了track_running_stats这个参数,

这个参数的作用如下:

训练时用来统计训练时的forward过的min-batch数目,每经过一个min-batch, track_running_stats+=1

如果没有指定momentum, 则使用1/num_batches_tracked 作为因数来计算均值和方差(running mean and variance).

其实,这个参数没啥用.但因为官方提供的预训练模型是pytorch0.3版本训练出来的,因此没有这个参数.

所以,只要过滤一下预训练权重字典中的关键字即可,‘num_batches_tracked'.代码例子,如下.

有问题的代码:

   def load_specific_param(self, state_dict, param_name, model_path):
        param_dict = torch.load(model_path)
        for i in state_dict:
            key = param_name + '.' + i
            state_dict[i].copy_(param_dict[key])
        del param_dict

对'num_batches_tracked进行过滤:

   def load_specific_param(self, state_dict, param_name, model_path):
        param_dict = torch.load(model_path)
        param_dict = {k: v for k, v in param_dict.items() if 'num_batches_tracked' not in k}
        for i in state_dict:
            key = param_name + '.' + i
            if 'num_batches_tracked' in key:
                continue
            state_dict[i].copy_(param_dict[key])
        del param_dict

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch加载预训练模型与自己模型不匹配的解决方案

    pytorch中如果自己搭建网络并且加载别人的与训练模型的话,如果模型和参数不严格匹配,就可能会出问题,接下来记录一下我的解决方法. 两个有序字典找不同 模型的参数和pth文件的参数都是有序字典(OrderedDict),把字典中的键转为列表就可以在for循环里迭代找不同了. model = ResNet18(1) model_dict1 = torch.load('resnet18.pth') model_dict2 = model.state_dict() model_list1 = lis

  • 解决Pytorch 加载训练好的模型 遇到的error问题

    这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然

  • pytorch 更改预训练模型网络结构的方法

    一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层): resnet_layer = nn.Sequential(*list(model.children())[:-2]) 那么,接下来就可以构建我们的网络了: class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取

  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    一.Pytorch修改预训练模型时遇到key不匹配 最近想着修改网络的预训练模型vgg.pth,但是发现当我加载预训练模型权重到新建的模型并保存之后. 在我使用新赋值的网络模型时出现了key不匹配的问题 #加载后保存(未修改网络) base_weights = torch.load(args.save_folder + args.basenet) ssd_net.vgg.load_state_dict(base_weights) torch.save(ssd_net.state_dict(),

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • 解决Pytorch 训练与测试时爆显存(out of memory)的问题

    Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法. 使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下: try: output = model(input) except RuntimeError as exception: if "out of memory" in str(exception): print("WARNING: out of

  • pytorch 修改预训练model实例

    我就废话不多说了,直接上代码吧! class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)

  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑 修改部分层,仍然调用之前的模型参数. resnet = resnet50(pretrained=False) resnet.load_state_dict(torch.load(args.predir)) res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2) print("---------------------",res_conv31) print("---

  • 使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

    本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建. 构建模型类的时候需要继承自torch.nn.Module类,要自己重写__ \_\___init__ \_\___方法和正向传递时的forward方法,这里我自己的理解是,搭建网络写在__ \_\___init__ \_\___中,每次正向传递需要计算的部分写在forward中,例如把矩阵压平之类的. 加载预训练ale

  • MxNet预训练模型到Pytorch模型的转换方式

    预训练模型在不同深度学习框架中的转换是一种常见的任务.今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下. 核心转换函数如下所示: def convert_from_mxnet(model, checkpoint_prefix, debug=False): _, mxnet_weights, mxnet_aux = mxnet.model.load_checkpoint(checkpoint_prefix, 0) remapped_state = {} for state_key in m

  • pytorch 在网络中添加可训练参数,修改预训练权重文件的方法

    实践中,针对不同的任务需求,我们经常会在现成的网络结构上做一定的修改来实现特定的目的. 假如我们现在有一个简单的两层感知机网络: # -*- coding: utf-8 -*- import torch from torch.autograd import Variable import torch.optim as optim x = Variable(torch.FloatTensor([1, 2, 3])).cuda() y = Variable(torch.FloatTensor([4,

随机推荐