Python机器学习应用之基于LightGBM的分类预测篇解读

目录
  • 一、Introduction
    • 1 LightGBM的优点
    • 2 LightGBM的缺点
  • 二、实现过程
    • 1 数据集介绍
    • 2 Coding
  • 三、Keys
    • LightGBM的重要参数
      • 基本参数调整
      • 针对训练速度的参数调整
      • 针对准确率的参数调整
      • 针对过拟合的参数调整

一、Introduction

LightGBM是扩展机器学习系统。是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架。其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价

1 LightGBM的优点

  • 简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。
  • 高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
  • 鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
  • LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理

2 LightGBM的缺点

  • 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
  • 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。

二、实现过程

1 数据集介绍

英雄联盟数据集 提取码:1234

本数据用于LightGBM分类实战。该数据集共有9881场英雄联盟韩服钻石段位以上的排位赛数据,数据提供了在十分钟时的游戏状态,包括击杀数,金币数量,经验值,等级等信息。

2 Coding

#导入基本库
import numpy as np
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
#%% 数据读入:利用Pandas自带的read_csv函数读取并转化为DataFrame格式
df = pd.read_csv('D:\Python\ML\data\high_diamond_ranked_10min.csv')
y = df.blueWins
#%%查看样本数据
#print(y.value_counts())
#标注特征列
drop_cols=['gameId','blueWins']
x=df.drop(drop_cols,axis=1)
#对数字特征进行统计描述
x_des=x.describe()

#%%去除冗余数据,因为红蓝为竞争关系,只需知道一方的情况,对方相反因此去除红方的数据信息
drop_cols = ['redFirstBlood','redKills','redDeaths'
             ,'redGoldDiff','redExperienceDiff', 'blueCSPerMin',
            'blueGoldPerMin','redCSPerMin','redGoldPerMin']
x.drop(drop_cols, axis=1, inplace=True)
#%%可视化描述。为了有一个好的呈现方式,分两张小提琴图展示前九个特征和中间九个特征,后面的相同不再赘述
data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)#将标签与前九列拼接此时的到的data是(9879*10)的metric
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')#将上面的数据melt成(88911*3)的metric

fig, ax = plt.subplots(1,2,figsize=(15,8))

# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
               inner='quart', ax=ax[0], palette='Blues')
fig.autofmt_xdate(rotation=45)#改变x轴坐标的现实方法,可以斜着表示(倾斜45度),不用平着挤成一堆

data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins',
               data=data, split=True, inner='quart', ax=ax[1], palette='Blues')
fig.autofmt_xdate(rotation=45)
plt.show()

#%%画出各个特征之间的相关性热力图
fig,ax=plt.subplots(figsize=(15,18))
sns.heatmap(round(x.corr(),2),cmap='Blues',annot=True)
fig.autofmt_xdate(rotation=45)
plt.show()

#%%根据上述特征图,剔除相关性较强的冗余特征(redAvgLevel,blueAvgLevel)
# 去除冗余特征
drop_cols = ['redAvgLevel','blueAvgLevel']
x.drop(drop_cols, axis=1, inplace=True)

sns.set(style='whitegrid', palette='muted')

# 构造两个新特征
x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']
x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']

data = x[['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(15,8))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.show()

#%%由上图插眼数量的离散图,可以发现插眼数量与游戏胜负之间的显著规律,游戏前十分钟插眼与否对最终的胜负影响不大,故将这些特征去除
## 去除和眼位相关的特征
drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',
            'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']
x.drop(drop_cols, axis=1, inplace=True)
#%%击杀、死亡与助攻数的数据分布差别不大,但是击杀减去死亡、助攻减去死亡的分布与缘分不差别较大,构造两个新的特征
x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']
x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].hist(figsize=(15,8), bins=20)
plt.show()

#%%
data = x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()

#%%
data = pd.concat([y, x], axis=1).sample(500)
sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists'],
             hue='blueWins')
plt.show()

#%%一些特征两两组合后对于数据的划分有提升
x['dragonsDiff'] = x['blueDragons'] - x['redDragons']#拿到龙
x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']#拿到峡谷先锋
x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']#击杀大型野怪
data = pd.concat([y, x], axis=1)
eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()
dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()
heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()
fig, ax = plt.subplots(1,3, figsize=(15,4))

eliteGroup.plot(kind='bar', ax=ax[0])
dragonGroup.plot(kind='bar', ax=ax[1])
heraldGroup.plot(kind='bar', ax=ax[2])

print(eliteGroup)
print(dragonGroup)
print(heraldGroup)

plt.show()

#%%推塔数量与游戏胜负
x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']
data = pd.concat([y, x], axis=1)
towerGroup = data.groupby(['towerDiff'])['blueWins']
print(towerGroup.count())
print(towerGroup.mean())

fig, ax = plt.subplots(1,2,figsize=(15,5))

towerGroup.mean().plot(kind='line', ax=ax[0])
ax[0].set_title('Proportion of Blue Wins')
ax[0].set_ylabel('Proportion')

towerGroup.count().plot(kind='line', ax=ax[1])
ax[1].set_title('Count of Towers Destroyed')
ax[1].set_ylabel('Count')

#%%利用LightGBM进行训练和预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = y
data_features_part = x
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)
#%%## 导入LightGBM模型
from lightgbm.sklearn import LGBMClassifier
## 定义 LightGBM 模型
clf = LGBMClassifier()
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

#%%在训练集和测试集上分别利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

#%%利用lightgbm进行特征选择,同样可以用属性feature_importances_查看特征的重要度
sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

#%%除feature_importances_外,还可以使用LightGBM中的其他属性进行评估(gain,split)
from sklearn.metrics import accuracy_score
from lightgbm import plot_importance

def estimate(model,data):
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="split")
    ax2.set_title('split')
    plt.show()
def classes(data,label,test):
    model=LGBMClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans

ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

通过调整参数获得更好的效果: LightGBM中重要的参数

  • learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
  • num_leaves:系统默认为32。这个参数控制每棵树中最大叶子节点数量。
  • feature_fraction:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
  • max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。
#%%调整参数,获得更好的效果
## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
feature_fraction = [0.5, 0.8, 1]
num_leaves = [16, 32, 64]
max_depth = [-1,3,5,8]

parameters = { 'learning_rate': learning_rate,
              'feature_fraction':feature_fraction,
              'num_leaves': num_leaves,
              'max_depth': max_depth}
model = LGBMClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=3, n_jobs=-1)
clf = clf.fit(x_train, y_train)
#%%查看最好的参数值分别是多少
print(clf.best_params_)

#%%查看最好的参数值分别是多少
print(clf.best_params_)
#%% 在训练集和测试集上分布利用最好的模型参数进行预测
## 定义带参数的 LightGBM模型
clf = LGBMClassifier(feature_fraction = 1,
                    learning_rate = 0.1,
                    max_depth= 3,
                    num_leaves = 16)
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

三、Keys

LightGBM的重要参数

基本参数调整

  • num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。
  • min_data_in_leaf 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际应用中, 对于大数据集, 设置其为几百或几千就足够了.
  • max_depth 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射

针对训练速度的参数调整

  • 通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。
  • 通过设置 feature_fraction 参数来使用特征的子抽样。
  • 选择较小的 max_bin 参数。使用 save_binary 在未来的学习过程对数据加载进行加速。

针对准确率的参数调整

  • 使用较大的 max_bin (学习速度可能变慢)
  • 使用较小的 learning_rate 和较大的 num_iterations
  • 使用较大的 num_leaves (可能导致过拟合)
  • 使用更大的训练数据
  • 尝试 dart 模式

针对过拟合的参数调整

  • 使用较小的 max_bin
  • 使用较小的 num_leaves
  • 使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
  • 通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
  • 通过设置 feature_fraction 来使用特征子抽样
  • 使用更大的训练数据
  • 使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
  • 尝试 max_depth 来避免生成过深的树

最近越发觉得良好的coding habits的重要性!debug才是yyds,从刚学C语言的时候就被老师教育过,当时尝到了debug的甜头,到后来大部分写完即使没有bug的代码还是会debug一遍,现在依然是,希望大家也都养成debug的习惯,当然还有就是写注释,annotation是自己当时的思想,不写后期自己返回来看很大程度时间久了都不知道每个步骤的用意。 886~~~

到此这篇关于Python机器学习应用之基于LightGBM的分类预测篇解读的文章就介绍到这了,更多相关Python LightGBM分类预测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • python机器学习之神经网络实现

    神经网络在机器学习中有很大的应用,甚至涉及到方方面面.本文主要是简单介绍一下神经网络的基本理论概念和推算.同时也会介绍一下神经网络在数据分类方面的应用. 首先,当我们建立一个回归和分类模型的时候,无论是用最小二乘法(OLS)还是最大似然值(MLE)都用来使得残差达到最小.因此我们在建立模型的时候,都会有一个loss function. 而在神经网络里也不例外,也有个类似的loss function. 对回归而言: 对分类而言: 然后同样方法,对于W开始求导,求导为零就可以求出极值来. 关于式子中

  • python机器学习之神经网络(二)

    由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想.为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下: 该网络由输入层,隐藏层,和输出层构成,能表示种类繁多的非线性曲面,每一个隐藏层都有一个激活函数,将该单元的输入数据与权值相乘后得到的值(即诱导局部域)经过激活函数,激活函数的输出值作为该单元的输出,激活函数类似与硬限幅函数,但硬限幅函数在阈值处是不可导的,而激活函数处处可导.本次程序中使用的激活函数是tanh函数,公式如下: tan

  • Python机器学习应用之基于天气数据集的XGBoost分类篇解读

    目录 一.XGBoost 1 XGBoost的优点 2 XGBoost的缺点 二.实现过程 1 数据集 2 实现 三.Keys XGBoost的重要参数 一.XGBoost XGBoost并不是一种模型,而是一个可供用户轻松解决分类.回归或排序问题的软件包. 1 XGBoost的优点 简单易用.相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果. 高效可扩展.在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高. 鲁棒性强.相对于深度学习模型不需要精细调参便能取得接近的

  • python机器学习之神经网络(一)

    python有专门的神经网络库,但为了加深印象,我自己在numpy库的基础上,自己编写了一个简单的神经网络程序,是基于Rosenblatt感知器的,这个感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干个突触的输入求和后进行调节.为了便于观察,这里的数据采用二维数据. 目标函数是训练结果的误差的平方和,由于目标函数是一个二次函数,只存在一个全局极小值,所以采用梯度下降法的策略寻找目标函数的最小值. 代码如下: import numpy

  • Python机器学习应用之决策树分类实例详解

    目录 一.数据集 二.实现过程 1 数据特征分析 2 利用决策树模型在二分类上进行训练和预测 3 利用决策树模型在多分类(三分类)上进行训练与预测 三.KEYS 1 构建过程 2 划分选择 3 重要参数 一.数据集 小企鹅数据集,提取码:1234 该数据集一共包含8个变量,其中7个特征变量,1个目标分类变量.共有150个样本,目标变量为 企鹅的类别 其都属于企鹅类的三个亚属,分别是(Adélie, Chinstrap and Gentoo).包含的三种种企鹅的七个特征,分别是所在岛屿,嘴巴长度,

  • python机器学习之神经网络

    手写数字识别算法 import pandas as pd import numpy as np from sklearn.neural_network import MLPRegressor #从sklearn的神经网络中引入多层感知器 data_tr = pd.read_csv('BPdata_tr.txt') # 训练集样本 data_te = pd.read_csv('BPdata_te.txt') # 测试集样本 X=np.array([[0.568928884039633],[0.37

  • python机器学习实现神经网络示例解析

    目录 单神经元引论 参考 多神经元 单神经元引论 对于如花,大美,小明三个因素是如何影响小强这个因素的. 这里用到的是多元的线性回归,比较基础 from numpy import array,exp,dot,random 其中dot是点乘 导入关系矩阵: X= array ( [ [0,0,1],[1,1,1],[1,0,1],[0,1,1]]) y = array( [ [0,1,1,0]]).T ## T means "transposition" 为了满足0到1的可能性,我们采用

  • python机器学习之神经网络(三)

    前面两篇文章都是参考书本神经网络的原理,一步步写的代码,这篇博文里主要学习了如何使用neurolab库中的函数来实现神经网络的算法. 首先介绍一下neurolab库的配置: 选择你所需要的版本进行下载,下载完成后解压. neurolab需要采用python安装第三方软件包的方式进行安装,这里介绍一种安装方式: (1)进入cmd窗口 (2)进入解压文件所在目录下 (3)输入 setup.py install 这样,在python安装目录的Python27\Lib\site-packages下,就可

  • Python机器学习应用之基于LightGBM的分类预测篇解读

    目录 一.Introduction 1 LightGBM的优点 2 LightGBM的缺点 二.实现过程 1 数据集介绍 2 Coding 三.Keys LightGBM的重要参数 基本参数调整 针对训练速度的参数调整 针对准确率的参数调整 针对过拟合的参数调整 一.Introduction LightGBM是扩展机器学习系统.是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架.其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价 1 LightGBM

  • Python机器学习应用之基于决策树算法的分类预测篇

    目录 一.决策树的特点 1.优点 2.缺点 二.决策树的适用场景 三.demo 一.决策树的特点 1.优点 具有很好的解释性,模型可以生成可以理解的规则. 可以发现特征的重要程度. 模型的计算复杂度较低. 2.缺点 模型容易过拟合,需要采用减枝技术处理. 不能很好利用连续型特征. 预测能力有限,无法达到其他强监督模型效果. 方差较高,数据分布的轻微改变很容易造成树结构完全不同. 二.决策树的适用场景 决策树模型多用于处理自变量与因变量是非线性的关系. 梯度提升树(GBDT),XGBoost以及L

  • Python机器学习应用之基于线性判别模型的分类篇详解

    目录 一.Introduction 1 LDA的优点 2 LDA的缺点 3 LDA在模式识别领域与自然语言处理领域的区别 二.Demo 三.基于LDA 手写数字的分类 四.小结 一.Introduction 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. LDA的思想可以用一句话概括,就是"投影后类内方差最小,类间方

  • Python机器学习NLP自然语言处理基本操作新闻分类

    目录 概述 TF-IDF 关键词提取 TF IDF TF-IDF TfidfVectorizer 数据介绍 代码实现 概述 从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁. TF-IDF 关键词提取 TF-IDF (Term Frequency-Inverse Document Frequency), 即词频-逆文件频率是一种用于信息检索与数据挖掘的常用加权技术. TF-IDF 可以帮助我

  • Python机器学习应用之支持向量机的分类预测篇

    目录 1.Question? 2.Answer!——SVM 3.软间隔 4.超平面 支持向量机常用于数据分类,也可以用于数据的回归预测 1.Question? 我们经常会遇到这样的问题,给你一些属于两个类别的数据(如子图1),需要一个线性分类器将这些数据分开,有很多分法(如子图2),现在有一个问题,两个分类器,哪一个更好?为了判断好坏,我们需要引入一个准则:好的分类器不仅仅能够很好的分开已有的数据集,还能对为知的数据进行两个划分,假设现在有一个属于红色数据点的新数据(如子图3中的绿三角),可以看

  • Python基于LightGBM进行时间序列预测

    目录 前言 特征 代码 结果 前言 当我们考虑时间序列的增强树时,通常会想到 M5 比赛,其中前十名中有很大一部分使用了 LightGBM.但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕. 首先需要明确的是M4 比赛的亚军 DID 使用了增强树.但是它作为一个元模型来集成其他更传统的时间序列方法.在 M4 上公开的代码中,所有标准增强树的基准测试都相当糟糕,有时甚至还达不到传统的预测方法.下面是Sktime 包和他们的论文所做的出色工作[1]: 任何带有“X

  • Python机器学习之基于Pytorch实现猫狗分类

    一.环境配置 安装Anaconda 具体安装过程,请点击本文 配置Pytorch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision 二.数据集的准备 1.数据集的下载 kaggle网站的数据集下载地址: https://www.kaggle.com/lizhensheng/-2000 2.

  • Python编程之基于概率论的分类方法:朴素贝叶斯

    概率论啊概率论,差不多忘完了. 基于概率论的分类方法:朴素贝叶斯 1. 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础--贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 2. 贝叶斯理论 & 条件概率 2.1 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(

随机推荐