Python中使用aiohttp模拟服务器出现错误

软件版本及环境:Python 3.9 + pycharm 2020.2.1 + Windows10 运行报错: DeprecationWarning: loop argument is deprecated
app = web.Application(loop=loop)DeprecationWarning: Application.make_handler(…) is deprecated, use AppRunner API instead
srv = await loop.create_server(app.make_handler(), ‘127.0.0.1', 8000) 出错代码

async def init(loop):
  app = web.Application(loop=loop)
  app.router.add_route('GET', '/', index)
  app.router.add_route('GET', '/hello/{name}', hello)
  srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000)
  print("Server started at http://127.0.0.1:8000...")
  return srv

解决方法 删除loop=loop

app = web.Application()

将app.make_handler()改为app()

srv = await loop.create_server(app(), '127.0.0.1', 8000)

运行结果

Server started at http://127.0.0.1:8000...

出错原因

新版本改动了库函数的使用

到此这篇关于Python中使用aiohttp模拟服务器出现错误的文章就介绍到这了,更多相关Python中使用aiohttp模拟服务器出现错误内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python aiohttp百万并发极限测试实例分析

    本文实例讲述了Python aiohttp百万并发极限测试.分享给大家供大家参考,具体如下: 本文将测试python aiohttp的极限,同时测试其性能表现,以分钟发起请求数作为指标.大家都知道,当应用到网络操作时,异步的代码表现更优秀,但是验证这个事情,同时搞明白异步到底有多大的优势以及为什么会有这样的优势仍然是一件有趣的事情.为了验证,我将发起1000000请求,用aiohttp客户端.aiohttp每分钟能够发起多少请求?你能预料到哪些异常情况以及崩溃会发生,当你用比较粗糙的脚本去发起如

  • Python中asyncio与aiohttp入门教程

    很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知道如何使用 Tornado.Twisted.Gevent 这类异步框架上,出现各种古怪的问题难以解决.而且使用了异步框架的部分同学,由于用法不对,感觉它并没牛逼到哪里去,所以很多同学做 Web 后端服务时还是采用 Flask.Django等传统的非异步框架. 从上两届 PyCon 技术大会看来,异步编程已经成了 Python 生态下一阶段的主旋律.如新兴的 Go.Rust.Eli

  • python aiohttp的使用详解

    1.aiohttp的简单使用(配合asyncio模块) import asyncio,aiohttp async def fetch_async(url): print(url) async with aiohttp.request("GET",url) as r: reponse = await r.text(encoding="utf-8") #或者直接await r.read()不编码,直接读取,适合于图像等无法编码文件 print(reponse) task

  • Python中使用aiohttp模拟服务器出现错误

    软件版本及环境:Python 3.9 + pycharm 2020.2.1 + Windows10 运行报错: DeprecationWarning: loop argument is deprecated app = web.Application(loop=loop)DeprecationWarning: Application.make_handler(-) is deprecated, use AppRunner API instead srv = await loop.create_s

  • Python中使用aiohttp模拟服务器出现错误问题及解决方法

    软件版本及环境:Python 3.9 + pycharm 2020.2.1 + Windows10 运行报错: DeprecationWarning: loop argument is deprecated app = web.Application(loop=loop) DeprecationWarning: Application.make_handler(-) is deprecated, use AppRunner API instead srv = await loop.create_

  • 在python中使用requests 模拟浏览器发送请求数据的方法

    如下所示: import requests url='http://####' proxy={'http':'http://####:80'} headers={ "Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Lang

  • Python中利用aiohttp制作异步爬虫及简单应用

    摘要: 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--aiohttp,它可以帮助我们异步地实现HTTP请求,从而使得我们的程序效率大大提高. 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--ai

  • 使用Python中的cookielib模拟登录网站

    前面简单提到了 Python 模拟登录的程序,但是没写清楚,这里再补上一个带注释的 Python 模拟登录的示例程序.简单说一下流程:先用cookielib获取cookie,再用获取到的cookie,进入需要登录的网站. # -*- coding: utf-8 -*- # !/usr/bin/python import urllib2 import urllib import cookielib import re auth_url = 'http://www.nowamagic.net/' h

  • Python中使用scapy模拟数据包实现arp攻击、dns放大攻击例子

    scapy是python写的一个功能强大的交互式数据包处理程序,可用来发送.嗅探.解析和伪造网络数据包,常常被用到网络攻击和测试中. 这里就直接用python的scapy搞. 这里是arp的攻击方式,你可以做成arp攻击. 复制代码 代码如下: #!/usr/bin/python """ ARP attack """ import sys, os from scapy.all import * if os.geteuid() != 0:    

  • python中使用paramiko模块并实现远程连接服务器执行上传下载功能

    paramiko模块 paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作,paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 由于使用的是python这样的能够跨平台运行的语言,所以所有python支持的平台,如Linux, Solaris, BSD, MacOS X, Windows等,paramiko都可以支持,因此,如果需要使用SSH从一个平台连接到另外一个平台,进行一系列的操作时,par

  • python中requests模拟登录的三种方式(携带cookie/session进行请求网站)

    一,cookie和session的区别 cookie在客户的浏览器上,session存在服务器上 cookie是不安全的,且有失效时间 session是在cookie的基础上,服务端设置session时会向浏览器发送设置一个设置cookie的请求,这个cookie包括session的id当访问服务端时带上这个session_id就可以获取到用户保存在服务端对应的session 二,爬虫处理cookie和session 带上cookie和session的好处: 能够请求到登录后的界面 带上cook

  • 利用Python中的mock库对Python代码进行模拟测试

     如何不靠耐心测试 通常,我们编写的软件会直接与那些我们称之为"肮脏的"服务交互.通俗地说,服务对我们的应用来说是至关重要的,它们之间的交互是我们设计好的,但这会带来我们不希望的副作用--就是那些在我们自己测试的时候不希望的功能. 比如,可能我们正在写一个社交软件并且想测试一下"发布到Facebook的功能",但是我们不希望每次运行测试集的时候都发布到Facebook上. Python的unittest库中有一个子包叫unittest.mock--或者你把它声明成一

随机推荐