C++实现LeetCode(44.外卡匹配)
[LeetCode] 44. Wildcard Matching 外卡匹配
Given an input string (s
) and a pattern (p
), implement wildcard pattern matching with support for '?'
and '*'
.
'?' Matches any single character. '*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s
could be empty and contains only lowercase lettersa-z
.p
could be empty and contains only lowercase lettersa-z
, and characters like?
or*
.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.
Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false
这道题通配符外卡匹配问题还是小有难度的,有特殊字符 ‘*' 和 ‘?',其中 ‘?' 能代替任何字符,‘*' 能代替任何字符串,注意跟另一道 Regular Expression Matching 正则匹配的题目区分开来。两道题的星号的作用是不同的,注意对比区分一下。这道题最大的难点,就是对于星号的处理,可以匹配任意字符串,简直像开了挂一样,就是说在星号对应位置之前,不管你s中有任何字符串,我大星号都能匹配你,主角光环啊。但即便叼如斯的星号,也有其处理不了的问题,那就是一旦p中有s中不存在的字符,那么一定无法匹配,因为星号只能增加字符,不能消除字符,再有就是星号一旦确定了要匹配的字符串,对于星号位置后面的匹配情况也就鞭长莫及了。所以p串中星号的位置很重要,用 jStar 来表示,还有星号匹配到s串中的位置,使用 iStart 来表示,这里 iStar 和 jStar 均初始化为 -1,表示默认情况下是没有星号的。然后再用两个变量i和j分别指向当前s串和p串中遍历到的位置。
开始进行匹配,若i小于s串的长度,进行 while 循环。若当前两个字符相等,或着p中的字符是问号,则i和j分别加1。若 p[j] 是星号,要记录星号的位置,jStar 赋为j,此时j再自增1,iStar 赋为i。若当前 p[j] 不是星号,并且不能跟 p[i] 匹配上,此时就要靠星号了,若之前星号没出现过,那么就直接跪,比如 s = "aa" 和 p = "c*",此时 s[0] 和 p[0] 无法匹配,虽然 p[1] 是星号,但还是跪。如果星号之前出现过,可以强行续一波命,比如 s = "aa" 和 p = "*c",当发现 s[1] 和 p[1] 无法匹配时,但是好在之前 p[0] 出现了星号,把 s[1] 交给 p[0] 的星号去匹配。至于如何知道之前有没有星号,这时就能看出 iStar 的作用了,因为其初始化为 -1,而遇到星号时,其就会被更新为i,只要检测 iStar 的值,就能知道是否可以使用星号续命。虽然成功续了命,匹配完了s中的所有字符,但是之后还要检查p串,此时没匹配完的p串里只能剩星号,不能有其他的字符,将连续的星号过滤掉,如果j不等于p的长度,则返回 false,参见代码如下:
解法一:
class Solution { public: bool isMatch(string s, string p) { int i = 0, j = 0, iStar = -1, jStar = -1, m = s.size(), n = p.size(); while (i < m) { if (j < n && (s[i] == p[j] || p[j] == '?')) { ++i; ++j; } else if (j < n && p[j] == '*') { iStar = i; jStar = j++; } else if (iStar >= 0) { i = ++iStar; j = jStar + 1; } else return false; } while (j < n && p[j] == '*') ++j; return j == n; } };
这道题也能用动态规划 Dynamic Programming 来解,写法跟之前那道题 Regular Expression Matching 很像,但是还是不一样。外卡匹配和正则匹配最大的区别就是在星号的使用规则上,对于正则匹配来说,星号不能单独存在,前面必须要有一个字符,而星号存在的意义就是表明前面这个字符的个数可以是任意个,包括0个,那么就是说即使前面这个字符并没有在s中出现过也无所谓,只要后面的能匹配上就可以了。而外卡匹配就不是这样的,外卡匹配中的星号跟前面的字符没有半毛钱关系,如果前面的字符没有匹配上,那么直接返回 false 了,根本不用管星号。而星号存在的作用是可以表示任意的字符串,当然只是当匹配字符串缺少一些字符的时候起作用,当匹配字符串p包含目标字符串s中没有的字符时,将无法成功匹配。
对于这种玩字符串的题目,动态规划 Dynamic Programming 是一大神器,因为字符串跟其子串之间的关系十分密切,正好适合 DP 这种靠推导状态转移方程的特性。那么先来定义dp数组吧,使用一个二维 dp 数组,其中 dp[i][j] 表示 s中前i个字符组成的子串和p中前j个字符组成的子串是否能匹配。大小初始化为 (m+1) x (n+1),加1的原因是要包含 dp[0][0] 的情况,因为若s和p都为空的话,也应该返回 true,所以也要初始化 dp[0][0] 为 true。还需要提前处理的一种情况是,当s为空,p为连续的星号时的情况。由于星号是可以代表空串的,所以只要s为空,那么连续的星号的位置都应该为 true,所以先将连续星号的位置都赋为 true。然后就是推导一般的状态转移方程了,如何更新 dp[i][j],首先处理比较 tricky 的情况,若p中第j个字符是星号,由于星号可以匹配空串,所以如果p中的前 j-1 个字符跟s中前i个字符匹配成功了( dp[i][j-1] 为true)的话,则 dp[i][j] 也能为 true。或者若p中的前j个字符跟s中的前i-1个字符匹配成功了( dp[i-1][j] 为true )的话,则 dp[i][j] 也能为 true(因为星号可以匹配任意字符串,再多加一个任意字符也没问题)。若p中的第j个字符不是星号,对于一般情况,假设已经知道了s中前 i-1 个字符和p中前 j-1 个字符的匹配情况(即 dp[i-1][j-1] ),现在只需要匹配s中的第i个字符跟p中的第j个字符,若二者相等( s[i-1] == p[j-1] ),或者p中的第j个字符是问号( p[j-1] == '?' ),再与上 dp[i-1][j-1] 的值,就可以更新 dp[i][j] 了,参见代码如下:
解法二:
class Solution { public: bool isMatch(string s, string p) { int m = s.size(), n = p.size(); vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false)); dp[0][0] = true; for (int i = 1; i <= n; ++i) { if (p[i - 1] == '*') dp[0][i] = dp[0][i - 1]; } for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (p[j - 1] == '*') { dp[i][j] = dp[i - 1][j] || dp[i][j - 1]; } else { dp[i][j] = (s[i - 1] == p[j - 1] || p[j - 1] == '?') && dp[i - 1][j - 1]; } } } return dp[m][n]; } };
其实这道题也可以使用递归来做,因为子串或者子数组这种形式,天然适合利用递归来做。但是愣了吧唧的递归跟暴力搜索并没有啥太大的区别,很容易被 OJ 毙掉,比如评论区六楼的那个 naive 的递归,其实完全是按照题目要求来的。首先判断s串,若为空,那么再看p串,若p为空,则为 true,或者跳过星号,继续调用递归。若s串不为空,且p串为空,则直接 false。若s串和p串均不为空,进行第一个字符的匹配,若相等,或者 p[0] 是问号,则跳过首字符,对后面的子串调用递归。若 p[0] 是星号,先尝试跳过s串的首字符,调用递归,若递归返回 true,则当前返回 true。否则尝试跳过p串的首字符,调用递归,若递归返回 true,则当前返回 true。但是很不幸,内存超出限制了 MLE,那么博主做了个简单的优化,跳过了连续的星号,参见评论区七楼的代码,但是这次时间超出了限制 TLE。博主想是不是取子串 substr() 操作太费时间,且调用递归的适合s串和p串又分别建立了副本,才导致的 TLE。于是想着用坐标变量来代替取子串,并且递归函数调用的s串和p串都加上引用,代码参见评论区八楼,但尼玛还是跪了,OJ 大佬,刀下留人啊。最后还是在论坛上找到了一个使用了神奇的剪枝的方法,这种解法的递归函数返回类型不是 bool 型,而是整型,有三种不同的状态,返回0表示匹配到了s串的末尾,但是未匹配成功;返回1表示未匹配到s串的末尾就失败了;返回2表示成功匹配。那么只有返回值大于1,才表示成功匹配。至于为何失败的情况要分类,就是为了进行剪枝。在递归函数中,若s串和p串都匹配完成了,返回状态2。若s串匹配完成了,但p串但当前字符不是星号,返回状态0。若s串未匹配完,p串匹配完了,返回状态1。若s串和p串均为匹配完,且当前字符成功匹配的话,对下一个位置调用递归。否则若p串当前字符是星号,首先跳过连续的星号。然后分别让星号匹配空串,一个字符,两个字符,....,直到匹配完整个s串,对每种情况分别调用递归函数,接下来就是最大的亮点了,也是最有用的剪枝,当前返回值为状态0或者2的时候,返回,否则继续遍历。如果仅仅是状态2的时候才返回,就像评论区八楼的代码,会有大量的重复计算,因为当返回值为状态0的时候,已经没有继续循环下去的必要了,非常重要的一刀剪枝,参见代码如下:
解法三:
class Solution { public: bool isMatch(string s, string p) { return helper(s, p, 0, 0) > 1; } int helper(string& s, string& p, int i, int j) { if (i == s.size() && j == p.size()) return 2; if (i == s.size() && p[j] != '*') return 0; if (j == p.size()) return 1; if (s[i] == p[j] || p[j] == '?') { return helper(s, p, i + 1, j + 1); } if (p[j] == '*') { if (j + 1 < p.size() && p[j + 1] == '*') { return helper(s, p, i, j + 1); } for (int k = 0; k <= (int)s.size() - i; ++k) { int res = helper(s, p, i + k, j + 1); if (res == 0 || res == 2) return res; } } return 1; } };
到此这篇关于C++实现LeetCode(44.外卡匹配)的文章就介绍到这了,更多相关C++实现外卡匹配内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!