利用Python实现数值积分的方法

目录
  • 1. 栗子
  • 2. 矩形计算面积
    • 2.1 左侧边长计算面积
    • 2.2 右侧边长计算面积
    • 2.3 中值边长计算面积
  • 3. 梯形计算面积
  • 4. 真值比对
  • 5. 总结

1. 栗子

为了加深大家的印象,首先我们来看个例子:

图示如下:

2. 矩形计算面积

我们知道,在数学中,积分运算表示上述曲线和x轴围成的封闭区域的面积,为此,我们在数值预算中,来近似计算上述区域的面积,最直观的想法就是拆成一个个小的矩形来计算对应的面积。

2.1 左侧边长计算面积

为了计算每个小矩形的面积,设计到边长高的选择,这里我么以左侧函数取值作为对应矩形的高来计算相应的小矩形的面积,图示如下:

对应的代码如下:

import numpy as np
x = np.linspace(0, 3, 1001)
f = lambda x: x**3 - 4*x**2 + 4*x + 2
a = 0.5
b = 2.5
Ax = np.linspace(a, b, 101)
Ay = f(Ax)
def defInt_left(f, a, b, N):
    # left-hand point
    result = 0; FX = []; Xn = []
    dx = abs(b - a)/N
    while a < b:
        result += f(a)*dx
        FX += [f(a)]
        Xn += [a]
        a += dx
    return result, FX, Xn, dx
N = 4
I_left, FX, Xn, dx = defInt_left(f, a, b, N)
print(I_left)

上述代码中,我们将横坐标拆分为4小份,也就是拆分成4个小矩形,然后使用函数左侧的点坐位小矩形的高,上述代码的运行结果如下:

5.25

2.2 右侧边长计算面积

这里和上述原理类似,只不过每个小矩形的高采用右侧边长函数取值来近似计算,图例如下:

样例代码如下:

def defInt_right(f, a, b, N):
    # right-hand point
    result = 0; FX = []; Xn = []
    dx = abs(b - a)/N
    while a < b:
        result += f(a + dx)*dx
        FX += [f(a + dx)]
        Xn += [a]
        a += dx
    return result, FX, Xn, dx

N = 4
I_right, FX, Xn, dx = defInt_right(f, a, b, N)
print(I_right)

运行结果如下:

5.0

2.3 中值边长计算面积

看了上述两种近似计算方式,有同学就说有取左侧点算出来面积大的,有取右侧点算出来面积小的,那干脆折中一下,我们来以中值坐位矩形的高来计算对应的面积。图例如下:

代码实现如下:

def defInt_middle(f, a, b, N):
    # middle point
    result = 0; FX = []; Xn = []
    dx = abs(b - a)/N
    while a < b:
        result += f(a + dx/2)*dx
        FX += [f(a + dx/2)]
        Xn += [a]
        a += dx
    return result, FX, Xn, dx

N = 4
I_mid, FX, Xn, dx = defInt_middle(f, a, b, N)
print(I_mid)

运行结果如下:

5.0625

3. 梯形计算面积

读到这里的同学可能会思考,既然可以将封闭区域划分成一个个的小矩形,那当然也可以将其划分成梯形来近似计算相应的面积,图例如下:

样例代码如下:

def defInt_trapezoid(f, a, b, N):
    # trapezoidal rule
    result = 0; FXa, FXb = [], []; Xn = []
    dx = abs(b - a)/N
    while a < b:
        result += (f(a) + f(a + dx))*dx/2
        FXa += [f(a)]; FXb += [f(a + dx)]
        Xn += [a]
        a += dx
    return result, FXa, FXb, Xn, dx

N = 4
I_trap, FXa, FXb, Xn, dx = defInt_trapezoid(f, a, b, N)
print(I_trap)

运行结果如下:

5.125

4. 真值比对

最后,我们来针对不同的N来讲封闭区域划分成对应的小份,分别针对性的计算上述四种方式的积分值,样例代码如下:

Nx = range(1, 11)
I1, I2, I3, I4 = [], [], [], []
for Ni in Nx:
    i1, *_ = defInt_left(f, a, b, Ni); I1 += [i1];
    i2, *_ = defInt_right(f, a, b, Ni); I2 += [i2];
    i3, *_ = defInt_middle(f, a, b, Ni); I3 += [i3];
    i4, *_ = defInt_trapezoid(f, a, b, Ni); I4 += [i4];

最后将其与真值进行对比,如下:

可以看出,随着划分区域的增多,采用梯形计算面积方式最逼近真值。

5. 总结

本文重点介绍了使用不同面积划分方法来近似计算积分取值的原理和相应的代码实现,其中采用梯形计算面积的方式随着划分子区域数目的增加最接近真值,推荐大家使用。

到此这篇关于利用Python实现数值积分的方法的文章就介绍到这了,更多相关Python实现数值积分内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现数值积分方式

    原理: 利用复化梯形公式,复化Simpson公式,计算积分. 步骤: import math """测试函数""" def f(x,i): if i == 1: return (4 - (math.sin(x)) ** 2) ** 0.5 if i == 2: if x == 0: return 1 else: return math.sin(x) / x if i == 3: return (math.exp(x)) / (4 + x ** 2

  • python实现数值积分的Simpson方法实例分析

    本文实例讲述了python实现数值积分的Simpson方法.分享给大家供大家参考.具体如下: #coding = utf-8 #simpson 法计算积分,数值积分,效果非常理想 from math import * def func(x): """ 定义被积分函数 """ return x*sin(x) def Get_N(a,b,width): # width为步长 N=int((b-a)/width + 1) if N%2 == 0: N=

  • 利用Python实现数值积分的方法

    目录 1. 栗子 2. 矩形计算面积 2.1 左侧边长计算面积 2.2 右侧边长计算面积 2.3 中值边长计算面积 3. 梯形计算面积 4. 真值比对 5. 总结 1. 栗子 为了加深大家的印象,首先我们来看个例子: 图示如下: 2. 矩形计算面积 我们知道,在数学中,积分运算表示上述曲线和x轴围成的封闭区域的面积,为此,我们在数值预算中,来近似计算上述区域的面积,最直观的想法就是拆成一个个小的矩形来计算对应的面积. 2.1 左侧边长计算面积 为了计算每个小矩形的面积,设计到边长高的选择,这里我

  • 利用Python实现面部识别的方法详解

    人脸识别正在成为软件开发中的一种趋势.它有助于识别人脸并使应用程序更加健壮.在本教程中,我们将使用python和face_recognition库创建一个简单的人脸识别. 对于开发环境,我们将使用 Visual Studio Community Edition. 如果你的计算机上还没有安装它,你可以从这里下载.并使用 C++安装桌面开发. 现在我们有了使用 C++ 进行桌面开发的 Visual Studio,我们可以开始我们的项目了. 使用 Visual Studio 打开一个新目录并创建一个新

  • 利用Python批量压缩png方法实例(支持过滤个别文件与文件夹)

    前言 本文主要给大家介绍的关于Python批量压缩png的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 1.需求 为什么会有这个需求?是因为游戏的资源大多是png图片,需要压缩,但是有些图片和文件夹里的图片,美术不想压缩,比如一些带透明度的光圈或者游戏的主要元素.所以要过滤下.发现python这个语言比较适合用在这个场景.所以写了点python. 2.源码 import os,sys import os.path rootdir=sys.path[0] #需要过滤的文

  • MySQL数据库设计之利用Python操作Schema方法详解

    弓在箭要射出之前,低声对箭说道,"你的自由是我的".Schema如箭,弓似Python,选择Python,是Schema最大的自由.而自由应是一个能使自己变得更好的机会. Schema是什么? 不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据.意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证.一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢

  • 利用python生成一个导出数据库的bat脚本文件的方法

    实例如下: # 环境: python3.x def getExportDbSql(db, index): # 获取导出一个数据库实例的sql语句 sql = 'mysqldump -u%s -p%s -h%s -P%d --default-character-set=utf8 --databases mu_ins_s%s > %s.s%d.mu_ins_%d.sql' %(db['user'], db['pwd'], db['host'], db['port'], index, db['serv

  • 利用python模拟实现POST请求提交图片的方法

    本文主要给大家介绍的是关于利用python模拟实现POST请求提交图片的方法,分享出来供大家参考学习,下面来一看看详细的介绍: 使用requests来模拟HTTP请求本来是一件非常轻松的事情,比如上传图片来说,简单的几行代码即可: import requests files = {'attachment_file': ('1.png', open('1.png', 'rb'), 'image/png', {})} values = {'next':"http://www.xxxx.com/xxx

  • 利用python程序生成word和PDF文档的方法

    一.程序导出word文档的方法 将web/html内容导出为world文档,再java中有很多解决方案,比如使用Jacob.Apache POI.Java2Word.iText等各种方式,以及使用freemarker这样的模板引擎这样的方式.php中也有一些相应的方法,但在python中将web/html内容生成world文档的方法是很少的.其中最不好解决的就是如何将使用js代码异步获取填充的数据,图片导出到word文档中. 1. unoconv 功能: 1.支持将本地html文档转换为docx

  • Python利用BeautifulSoup解析Html的方法示例

    介绍 Beautiful Soup提供一些简单的.python式的函数用来处理导航.搜索.修改分析树等功能.它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序. Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码.你不需要考虑编码方式,除非文档没有指定一个编码方式,这时,Beautiful Soup就不能自动识别编码方式了.然后,你仅仅需要说明一下原始编码方式就可以了. Beautiful

  • 利用Python自动监控网站并发送邮件告警的方法

    前言 因为有一些网站需要每日检查是否有问题,所以需要一个报警监控的机制,这个需要你指定你发送的邮箱和你接收的邮箱,就可以做到对网站自动监控了. 这里用的是python3.5 需要安装的插件: 1.smtplib:发邮件需要用到 2.pycurl:访问网站时会需要用到 3.linecache:在读取txt网站清单时需要用到 具体思路: python程序从txt里面批量读取到网站的信息,通过Curl.py模拟浏览器去访问网站,并且把访问的结果写入到以自己的网站名称-日期.txt格式的文件中记录;有几

随机推荐