javaCV视频处理之提取人像视频
效果图对比
左侧的为原视频,右侧为提取人像跳舞的视频。
pom文件引入依赖
<!-- https://mvnrepository.com/artifact/com.baidu.aip/java-sdk --> <dependency> <groupId>com.baidu.aip</groupId> <artifactId>java-sdk</artifactId> <version>4.16.3</version> </dependency> <!-- https://mvnrepository.com/artifact/org.bytedeco/javacv-platform --> <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> <version>1.5.5</version> </dependency>
java核心实现代码(完整)
import com.baidu.aip.bodyanalysis.AipBodyAnalysis; import org.bytedeco.javacv.FFmpegFrameGrabber; import org.bytedeco.javacv.FFmpegFrameRecorder; import org.bytedeco.javacv.Frame; import org.bytedeco.javacv.Java2DFrameConverter; import javax.imageio.ImageIO; import java.awt.*; import java.awt.image.BufferedImage; import java.io.*; import java.util.HashMap; import org.bytedeco.ffmpeg.global.avutil; import org.bytedeco.ffmpeg.global.avcodec; import org.json.JSONObject; import sun.misc.BASE64Decoder; public class VideoProcessor { //设置APPID/AK/SK public static final String APP_ID = "25393592"; public static final String API_KEY = "OkRDD6FQwm5hTKGSMIEL9RN4"; public static final String SECRET_KEY = "ONAxohflnqL2HwBEQB2iGUCjmO5lgywp"; final static String videoFolderPath = "C:/Users/liuya/Desktop/video/"; final static String videoName = "demo.mp4"; final static String imageFolderPath = "C:/Users/liuya/Desktop/people/"; public static void main(String[] args) throws Exception { videoProcess(videoFolderPath + videoName); } //视频水印 public static void videoProcess(String filePath) { //抓取视频图像资源 FFmpegFrameGrabber videoGrabber = new FFmpegFrameGrabber(filePath); //抓取视频图像资源 FFmpegFrameGrabber audioGrabber = new FFmpegFrameGrabber(filePath); try { videoGrabber.start(); audioGrabber.start(); FFmpegFrameRecorder recorder = new FFmpegFrameRecorder(videoFolderPath + "new" + videoName, videoGrabber.getImageWidth(), videoGrabber.getImageHeight(), videoGrabber.getAudioChannels()); recorder.setPixelFormat(avutil.AV_PIX_FMT_YUV420P); recorder.setVideoCodec(avcodec.AV_CODEC_ID_H264); recorder.start(); //处理图像 int videoSize = videoGrabber.getLengthInVideoFrames(); for (int i = 0; i < videoSize; i++) { Frame videoFrame = videoGrabber.grabImage(); if (videoFrame != null && videoFrame.image != null) { System.out.println("视频共" + videoSize + "帧,正处理第" + (i + 1) + "帧图片"); Java2DFrameConverter converter = new Java2DFrameConverter(); BufferedImage bi=converter.getBufferedImage(videoFrame); BufferedImage bufferedImage = splitting(bi); recorder.record(converter.convert(bufferedImage)); } } //处理音频 for (int i = 0; i < audioGrabber.getLengthInAudioFrames(); i++) { Frame audioFrame = audioGrabber.grabSamples(); if (audioFrame != null && audioFrame.samples != null) { recorder.recordSamples(audioFrame.sampleRate, audioFrame.audioChannels, audioFrame.samples); } } recorder.stop(); recorder.release(); videoGrabber.stop(); audioGrabber.stop(); } catch (Exception e) { e.printStackTrace(); } } public static BufferedImage splitting(BufferedImage image){ ByteArrayOutputStream out=new ByteArrayOutputStream(); try { ImageIO.write(image,"png",out); } catch (IOException e) { e.printStackTrace(); } return splitting(out.toByteArray()); } public static BufferedImage splitting(byte[] image){ // 初始化一个AipBodyAnalysis AipBodyAnalysis client = new AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY); // 可选:设置网络连接参数 client.setConnectionTimeoutInMillis(2000); client.setSocketTimeoutInMillis(60000); // 传入可选参数调用接口 HashMap<String, String> options = new HashMap<String, String>(); options.put("type", "foreground"); // 参数为本地路径 JSONObject res = client.bodySeg(image, options); return convert(res.get("foreground").toString()); } public static BufferedImage convert(String labelmapBase64) { try { BASE64Decoder decoder = new BASE64Decoder(); byte[] bytes = decoder.decodeBuffer(labelmapBase64); InputStream is = new ByteArrayInputStream(bytes); BufferedImage image = ImageIO.read(is); //失真处理 BufferedImage newBufferedImage = new BufferedImage(image.getWidth(), image.getHeight(), BufferedImage.TYPE_INT_RGB); newBufferedImage.createGraphics().drawImage(image, 0, 0, Color.WHITE, null); ByteArrayOutputStream out=new ByteArrayOutputStream(); ImageIO.write(newBufferedImage, "png", out); ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray()); return ImageIO.read(in); } catch (IOException e) { e.printStackTrace(); return null; } } }
控制台输出
到此这篇关于javaCV视频处理之提取人像视频的文章就介绍到这了,更多相关javaCV提取人像视频内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)