Python3+OpenCV实现简单交通标志识别流程分析

由于该项目是针对中小学生竞赛并且是第一次举行,所以识别的目标交通标志仅仅只有直行、右转、左转和停车让行。

数据集:

链接: https://pan.baidu.com/s/1SL0qE-qd4cuatmfZeNuK0Q 提取码: vuvi 

源代码:https://github.com/ccxiao5/Traffic_sign_recognition

整体流程如下:

  • 数据集收集(包括训练集和测试集的分类)
  • 图像预处理
  • 图像标注
  • 根据标注分割得到目标图像
  • HOG特征提取
  • 训练得到模型
  • 将模型带入识别算法进行识别

我的数据目录树。其中test_images/train_images是收集得到原始数据集。realTest/realTrain是预处理后的图像。dataTest/dataTrain是经过分类处理得到的图像,HogTest/HogTrain是通过XML标注后裁剪得到的图像。HogTest_affine/HogTrain_affine是经过仿射变换处理扩充的训练集和测试集。imgTest_hog.txt/imgTrain_hog.txt是测试集和训练集的Hog特征

一、图像处理

  由于得到的数据集图像大小不一(如下),我们首先从中心区域裁剪并调整正方形图像的大小,然后将处理后的图像保存到realTrain和realTest里面。

图片名称对应关系如下:

img_label = {
"000":"Speed_limit_5",
"001":"Speed_limit_15",
"002":"Speed_limit_30",
"003":"Speed_limit_40",
"004":"Speed_limit_50",
"005":"Speed_limit_60",
"006":"Speed_limit_70",
"007":"Speed_limit_80",
"008":"No straight or right turn",
"009":"No straight or left turn",
"010":"No straight",
"011":"No left turn",
"012":"Do not turn left and right",
"013":"No right turn",
"014":"No Overhead",
"015":"No U-turn",
"016":"No Motor vehicle",
"017":"No whistle",
"018":"Unrestricted speed_40",
"019":"Unrestricted speed_50",
"020":"Straight or turn right",
"021":"Straight",
"022":"Turn left",
"023":"Turn left or turn right",
"024":"Turn right",
"025":"Drive on the left side of the road",
"026":"Drive on the right side of the road",
"027":"Driving around the island",
"028":"Motor vehicle driving",
"029":"Whistle",
"030":"Non-motorized",
"031":"U-turn",
"032":"Left-right detour",
"033":"traffic light",
"034":"Drive cautiously",
"035":"Caution Pedestrians",
"036":"Attention non-motor vehicle",
"037":"Mind the children",
"038":"Sharp turn to the right",
"039":"Sharp turn to the left",
"040":"Downhill steep slope",
"041":"Uphill steep slope",
"042":"Go slow",
"044":"Right T-shaped cross",
"043":"Left T-shaped cross",
"045":"village",
"046":"Reverse detour",
"047":"Railway crossing-1",
"048":"construction",
"049":"Continuous detour",
"050":"Railway crossing-2",
"051":"Accident-prone road section",
"052":"stop",
"053":"No passing",
"054":"No Parking",
"055":"No entry",
"056":"Deceleration and concession",
"057":"Stop For Check"
}
def center_crop(img_array, crop_size=-1, resize=-1, write_path=None):
    ##从中心区域裁剪并调整正方形图像的大小。
    rows = img_array.shape[0]
    cols = img_array.shape[1]

    if crop_size==-1 or crop_size>max(rows,cols):
        crop_size = min(rows, cols)
    row_s = max(int((rows-crop_size)/2), 0)
    row_e = min(row_s+crop_size, rows)
    col_s = max(int((cols-crop_size)/2), 0)
    col_e = min(col_s+crop_size, cols)

    img_crop = img_array[row_s:row_e,col_s:col_e,]

    if resize>0:
        img_crop = cv2.resize(img_crop, (resize, resize))

    if write_path is not None:
        cv2.imwrite(write_path, img_crop)
    return img_crop

  然后根据得到的realTrain和realTest自动生成带有<size><width><height><depth><filename>的xml文件

def write_img_to_xml(imgfile, xmlfile):

    img = cv2.imread(imgfile)
    img_folder, img_name = os.path.split(imgfile)
    img_height, img_width, img_depth = img.shape
    doc = Document()

    annotation = doc.createElement("annotation")
    doc.appendChild(annotation)

    folder = doc.createElement("folder")
    folder.appendChild(doc.createTextNode(img_folder))
    annotation.appendChild(folder)

    filename = doc.createElement("filename")
    filename.appendChild(doc.createTextNode(img_name))
    annotation.appendChild(filename)

    size = doc.createElement("size")
    annotation.appendChild(size)

    width = doc.createElement("width")
    width.appendChild(doc.createTextNode(str(img_width)))
    size.appendChild(width)

    height = doc.createElement("height")
    height.appendChild(doc.createTextNode(str(img_height)))
    size.appendChild(height)

    depth = doc.createElement("depth")
    depth.appendChild(doc.createTextNode(str(img_depth)))
    size.appendChild(depth)

    with open(xmlfile, "w") as f:
        doc.writexml(f, indent="\t", addindent="\t", newl="\n", encoding="utf-8")
<annotation>
<folder>/home/xiao5/Desktop/Test2/data/realTest/PNGImages</folder>
<filename>000_1_0001_1_j.png</filename>
<size>
<width>640</width>
<height>640</height>
<depth>3</depth>
</size>
</annotation>

然后对realTrain和realTest的图片进行标注,向默认XML添加新的信息(矩形信息)。

<annotation>
<folder>PNGImages</folder>
<filename>021_1_0001_1_j.png</filename>
<path>
C:\Users\xiao5\Desktop\realTest\PNGImages\021_1_0001_1_j.png
</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>640</width>
<height>640</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>Straight</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>13</xmin>
<ymin>22</ymin>
<xmax>573</xmax>
<ymax>580</ymax>
</bndbox>
</object>
</annotation>

处理完后利用我们添加的矩形将图片裁剪下来并且重命名进行分类。主要思路是:解析XML文档,根据<name>标签进行分类,如果是直行、右转、左转、停止,那么就把它从原图中裁剪下来并重命名,如果没有<object>那么就认为是负样本,其中在处理负样本的时候,我进行了颜色识别,把一张负样本图片根据颜色(红色、蓝色)裁剪成几张负样本,这样做的好处是:我们在进行交通标志的识别时,也是使用的颜色识别来选取到交通标志,我们从负样本中分割出来的相近颜色样本有利于负样本的训练,提高模型精度。

def produce_proposals(xml_dir, write_dir, square=False, min_size=30):
                ##返回proposal_num对象
    proposal_num = {}
    for cls_name in classes_name:
        proposal_num[cls_name] = 0

    index = 0
    for xml_file in os.listdir(xml_dir):
        img_path, labels = parse_xml(os.path.join(xml_dir,xml_file))
        img = cv2.imread(img_path)
        ##如果图片中没有出现定义的那几种交通标志就把它当成负样本
        if len(labels) == 0:
            neg_proposal_num = produce_neg_proposals(img_path, write_dir, min_size, square, proposal_num["background"])
            proposal_num["background"] = neg_proposal_num
        else:
            proposal_num = produce_pos_proposals(img_path, write_dir, labels, min_size, square=True, proposal_num=proposal_num)

        if index%100 == 0:
            print ("total xml file number = ", len(os.listdir(xml_dir)), "current xml file number = ", index)
            print ("proposal num = ", proposal_num)
        index += 1

    return proposal_num

为了提高模型的精确度,还对目标图片(四类图片)进行仿射变换来扩充训练集。

def affine(img, delta_pix):
    rows, cols, _ = img.shape
    pts1 = np.float32([[0,0], [rows,0], [0, cols]])
    pts2 = pts1 + delta_pix
    M = cv2.getAffineTransform(pts1, pts2)
    res = cv2.warpAffine(img, M, (rows, cols))
    return res

def affine_dir(img_dir, write_dir, max_delta_pix):
    img_names = os.listdir(img_dir)
    img_names = [img_name for img_name in img_names if img_name.split(".")[-1]=="png"]
    for index, img_name in enumerate(img_names):
        img = cv2.imread(os.path.join(img_dir,img_name))
        save_name = os.path.join(write_dir, img_name.split(".")[0]+"f.png")
        delta_pix = np.float32(np.random.randint(-max_delta_pix,max_delta_pix+1,[3,2]))
        img_a = affine(img, delta_pix)
        cv2.imwrite(save_name, img_a)

二、HOG特征提取

处理好图片后分别对训练集和测试集进行特征提取得到imgTest_HOG.txt和imgTrain_HOG.txt

def hog_feature(img_array, resize=(64,64)):
    ##提取HOG特征

    img = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
    img = cv2.resize(img, resize)
    bins = 9
    cell_size = (8, 8)
    cpb = (2, 2)
    norm = "L2"
    features = ft.hog(img, orientations=bins, pixels_per_cell=cell_size,
                        cells_per_block=cpb, block_norm=norm, transform_sqrt=True)
    return features

def extra_hog_features_dir(img_dir, write_txt, resize=(64,64)):
    ##提取目录中所有图像HOG特征

    img_names = os.listdir(img_dir)
    img_names = [os.path.join(img_dir, img_name) for img_name in img_names]
    if os.path.exists(write_txt):
        os.remove(write_txt)

    with open(write_txt, "a") as f:
        index = 0
        for img_name in img_names:
            img_array = cv2.imread(img_name)
            features = hog_feature(img_array, resize)
            label_name = img_name.split("/")[-1].split("_")[0]
            label_num = img_label[label_name]
            row_data = img_name + "\t" + str(label_num) + "\t"

            for element in features:
                row_data = row_data + str(round(element,3)) + " "
            row_data = row_data + "\n"
            f.write(row_data)

            if index%100 == 0:
                print ("total image number = ", len(img_names), "current image number = ", index)
            index += 1

三、模型训练

利用得到的HOG特征进行训练模型得到svm_model.pkl

def load_hog_data(hog_txt):

    img_names = []
    labels = []
    hog_features = []
    with open(hog_txt, "r") as f:
        data = f.readlines()
        for row_data in data:
            row_data = row_data.rstrip()
            img_path, label, hog_str = row_data.split("\t")
            img_name = img_path.split("/")[-1]
            hog_feature = hog_str.split(" ")
            hog_feature = [float(hog) for hog in hog_feature]
            #print "hog feature length = ", len(hog_feature)
            img_names.append(img_name)
            labels.append(label)
            hog_features.append(hog_feature)
    return img_names, np.array(labels), np.array(hog_features)

def svm_train(hog_features, labels, save_path="./svm_model.pkl"):

    clf = SVC(C=10, tol=1e-3, probability = True)
    clf.fit(hog_features, labels)
    joblib.dump(clf, save_path)
    print ("finished.")

四、交通标志识别及实验测试

交通标志识别的流程:颜色识别得到阈值范围内的二值图、然后进行轮廓识别、剔除多余矩阵。

def preprocess_img(imgBGR):
        ##将图像由RGB模型转化成HSV模型
    imgHSV = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2HSV)
    Bmin = np.array([110, 43, 46])
    Bmax = np.array([124, 255, 255])
        ##使用inrange(HSV,lower,upper)设置阈值去除背景颜色
    img_Bbin = cv2.inRange(imgHSV,Bmin, Bmax)
    Rmin2 = np.array([165, 43, 46])
    Rmax2 = np.array([180, 255, 255])
    img_Rbin = cv2.inRange(imgHSV,Rmin2, Rmax2)
    img_bin = np.maximum(img_Bbin, img_Rbin)
    return img_bin

'''
提取轮廓,返回轮廓矩形框
'''
def contour_detect(img_bin, min_area=0, max_area=-1, wh_ratio=2.0):
    rects = []
    ##检测轮廓,其中cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_NONE 存储所有的边界点
    ##findContours返回三个值:第一个值返回img,第二个值返回轮廓信息,第三个返回相应轮廓的关系
    contours, hierarchy= cv2.findContours(img_bin.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    if len(contours) == 0:
        return rects
    max_area = img_bin.shape[0]*img_bin.shape[1] if max_area<0 else max_area
    for contour in contours:
        area = cv2.contourArea(contour)
        if area >= min_area and area <= max_area:
            x, y, w, h = cv2.boundingRect(contour)
            if 1.0*w/h < wh_ratio and 1.0*h/w < wh_ratio:
                rects.append([x,y,w,h])
    return rects

然后加载模型进行测验

if __name__ == "__main__":
    cap = cv2.VideoCapture(0)
    cv2.namedWindow('camera')
    cv2.resizeWindow("camera",640,480)
    cols = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    rows = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    clf = joblib.load("/home/xiao5/Desktop/Test2/svm_model.pkl")
    i=0
    while (1):
        i+=1
        ret, img = cap.read()
        img_bin = preprocess_img(img)
        min_area = img_bin.shape[0]*img.shape[1]/(25*25)
        rects = contour_detect(img_bin, min_area=min_area)
        if rects:
            Max_X=0
            Max_Y=0
            Max_W=0
            Max_H=0
            for r in rects:
                if r[2]*r[3]>=Max_W*Max_H:
                    Max_X,Max_Y,Max_W,Max_H=r
            proposal = img[Max_Y:(Max_Y+Max_H),Max_X:(Max_X+Max_W)]##用Numpy数组对图像像素进行访问时,应该先写图像高度所对应的坐标(y,row),再写图像宽度对应的坐标(x,col)。
            cv2.rectangle(img,(Max_X,Max_Y), (Max_X+Max_W,Max_Y+Max_H), (0,255,0), 2)
            cv2.imshow("proposal", proposal)
            cls_prop = hog_extra_and_svm_class(proposal, clf)
            cls_prop = np.round(cls_prop, 2)
            cls_num = np.argmax(cls_prop)##找到最大相似度的索引
            if cls_names[cls_num] is not "background":
                print(cls_names[cls_num])
            else:
                print("N/A")
        cv2.imshow('camera',img)
        cv2.waitKey(40)
    cv2.destroyAllWindows()
    cap.release()

到此这篇关于Python3+OpenCV实现简单交通标志识别的文章就介绍到这了,更多相关Python3 OpenCV交通标志识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • OpenCV+Python3.5 简易手势识别的实现

    检测剪刀石头布三种手势,通过摄像头输入,方法如下: 选用合适颜色空间及阈值提取皮肤部分 使用滤波腐蚀膨胀等方法去噪 边缘检测 寻用合适方法分类 OpenCV用摄像头捕获视频 采用方法:调用OpenCV--cv2.VideoCapture() def video_capture(): cap = cv2.VideoCapture(0) while True: # capture frame-by-frame ret, frame = cap.read() # our operation on th

  • python3+opencv3识别图片中的物体并截取的方法

    如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

  • 基于python3+OpenCV实现人脸和眼睛识别

    基于python3+OpenCV的人脸和眼睛识别,供大家参考,具体内容如下 一.OpenCV人脸检测的xml文件下载 人脸检测和眼睛检测要用到haarcascade_eye.xml和haarcascade_frontalface_default.xml这两个文件,这两个文件可以在OpenCV的官网下载,具体下载方法如下: 1.打开要下载的xml文件,如下图: 2.点击Raw: 3.在新打开的网页中右击,选择另存为,最后保存就可以了. 二.人脸检测文件的导入以及图片的处理 接下来就可以在代码中载入

  • Python3+OpenCV实现简单交通标志识别流程分析

    由于该项目是针对中小学生竞赛并且是第一次举行,所以识别的目标交通标志仅仅只有直行.右转.左转和停车让行. 数据集: 链接: https://pan.baidu.com/s/1SL0qE-qd4cuatmfZeNuK0Q 提取码: vuvi  源代码:https://github.com/ccxiao5/Traffic_sign_recognition 整体流程如下: 数据集收集(包括训练集和测试集的分类) 图像预处理 图像标注 根据标注分割得到目标图像 HOG特征提取 训练得到模型 将模型带入识

  • 基于Matlab实现BP神经网络交通标志识别

    目录 一.BP神经网络交通标志识别简介 二.部分源代码 三.运行结果 一.BP神经网络交通标志识别简介 道路交通标志用以禁止.警告.指示和限制道路使用者有秩序地使用道路, 保障出行安全.若能自动识别道路交通标志, 则将极大减少道路交通事故的发生.但是由于道路交通错综复杂, 且智能识别技术尚未成熟, 为了得到高效实用的道路标志识别系统, 仍需进行大量的研究.限速交通标志的检测识别作为道路交通标志识别系统的一个重要组成部分, 对它的研究具有非常重要的意义. 目前国内已有不少学者针对道路交通标志牌的智

  • 如何基于opencv实现简单的数字识别

    目录 前言 要解决的问题 解决问题的思路 总结 前言 由于自己学识尚浅,不能用python深度学习来识别这里的数字,所以就完全采用opencv来识别数字,然后在这里分享.记录一下自己在学习过程中的一些所见所得和所想 要解决的问题 这是一个要识别的数字,我这里首先是对图像进行一个ROI的提取,提取结果就仅仅剩下数字,把其他的一些无关紧要的要素排除在外, 这是ROI图片,我们要做的就是识别出该照片中的数字, 解决问题的思路 1.先把这个图片中的数字分割,分割成为5张小图片,每张图片包含一个数字,为啥

  • Kears+Opencv实现简单人脸识别

    写在前面:这篇文章也是借鉴了一些前辈的代码和思路写的,代码有些也是复用了别人的. 先说下思路: 1.首先利用Opencv检测出人脸的区域 2.在成功的检测出人脸区域后,将识别出的人脸区域截取成图片,储存起来,用作后续的训练数据. 3.在获取到了足够多的数据后,搭建CNN网络进行训练. 5.训练完成后,将模型存储起来. 6.在利用Opencv实时读取视频流,将检测出人脸的区域变成图片放入模型中进行预测. 以上就是这个项目的一个基本的思路了. 1.利用Opencv检测人脸的代码如下,这个代码在Ope

  • Python3实现的简单验证码识别功能示例

    本文实例讲述了Python3实现的简单验证码识别功能.分享给大家供大家参考,具体如下: 这次的需求是自动登录某机构网站, 其验证码很具特色, 很适合做验证码识别入门demo, 先贴主要代码, 其中图片对比使用了编辑距离算法, 脚本使用了pillow库 from PIL import Image import requests import re splitter = re.compile(r'\d{30}') # 分割二值化后的图片 # distance('11110000', '0000000

  • Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)

    可以直接跳到最后整体代码看一看是不是很少的代码!!!! 思路: 1. 数据的整合 2. 图片的灰度转化 3. 图片的二值转化 4. 图片的轮廓识别 5. 得到图片的顶点数 6. 依据顶点数判断图像形状 一.原数据的展示 图片文件共36个文件夹,每个文件夹有100张图片,共3600张图片. 每一个文件夹里都有形同此类的图形 二.数据的整合 对于多个文件夹,分析起来很不方便,所有决定将其都放在一个文件夹下进行分析,在python中具体实现如下: 本次需要的包 import cv2 import os

  • OpenCV简单标准数字识别的完整实例

    在学习openCV时,看到一个问答做数字识别,里面配有代码,应用到了openCV里面的ml包,很有学习价值. https://stackoverflow.com/questions/9413216/simple-digit-recognition-ocr-in-opencv-python# import sys import numpy as np import cv2 im = cv2.imread('t.png') im3 = im.copy() gray = cv2.cvtColor(im

  • python 使用OpenCV进行简单的人像分割与合成

    实现思路 通过背景建模的方法,对源图像中的动态人物前景进行分割,再将目标图像作为背景,进行合成操作,获得一个可用的合成影像. 实现步骤如下. 使用BackgroundSubtractorMOG2进行背景分割 BackgroundSubtractorMOG2是一个以高斯混合模型为基础的背景前景分割算法, 混合高斯模型 分布概率是K个高斯分布的和,每个高斯分布有属于自己的 μμ 和 σσ 参数,以及对应的权重参数,权重值必须为正数,所有权重的和必须等于1,以确保公式给出数值是合理的概率密度值.换句话

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

随机推荐