Android线程池源码阅读记录介绍

今天面试被问到线程池如何复用线程的?当场就懵掉了...于是面试完毕就赶紧打开源码看了看,在此记录下:

我们都知道线程池的用法,一般就是先new一个ThreadPoolExecutor对象,再调用execute(Runnable runnable)传入我们的Runnable,剩下的交给线程池处理就行了,于是这次我就从ThreadPoolExecutor的execute方法看起:

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        //1.如果workerCountOf(c)即正在运行的线程数小于核心线程数,就执行addWork
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //2.如果线程池还在运行状态并且把任务添加到任务队列成功
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            //3.如果线程池不在运行状态并且从任务队列移除任务成功,执行线程池饱和策略(默认直接抛出异常)
            if (! isRunning(recheck) && remove(command))
                reject(command);
            //4.否则如果此时运行线程数==0,就直接调用addWork方法
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //5.如果2条件不成立,继续判断如果addWork返回false,执行线程池饱和策略
        else if (!addWorker(command, false))
            reject(command);
    }

大致过程就是如果核心线程未满,则直接addWorker(该方法下面会再分析);如果核心线程已满,则尝试将任务加进消息队列中,并再判断如果此时运行线程数==0则调addWorker方法,否则不做任何处理(因为运行的线程处理完自己的任务后会去消息队列中取任务来执行,下面会分析);如果任务队列添加任务失败,那么直接addWorker(),如果addWorker返回false,执行饱和策略,下面我们就来看看addWorker里面做了什么

    /**
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                //1.如果正在运行的线程数大于corePoolSize 或 maximumPoolSize(core代表以核心线程数还是最大线程数为边界),return false,表示addWorker失败
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //2.否则将运行线程数+1,并跳出这个for循环
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            //3.创建一个Worker对象,传入我们的runnable
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //4.开始启动线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }
/** Delegates main run loop to outer runWorker. */
        public void run() {
            runWorker(this);
        }
final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //1.当firstTask不为空或getTask不为空时一直循环
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        //2.执行任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

可以看到addWorker方法主要就是先判断正在运行线程数是否超过了最大线程数(具体根据边界取),如果未超过则创建一个worker对象,其中firstTask是我们传入的Runnable,当然根据上面的execute方法可知当4条件满足时,传入的firstTask是null,Thread是用ThreadFactory创建的线程,传入的Runnable是Worker自己,最后开启线程,于是执行Worker这里的run、runWorker方法,在runWorker方法里,开启一个while循环,当firstTask不为空或getTask不为空时,执行task,下面我们接着看看getTask里面做了什么:

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            //1.会不会淘汰空闲线程
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            //2.return null意味着回收一个Worker即淘汰一个线程
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                //3.等待指定时间
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

可以看1、2注释,allowCoreThreadTimeOut代表存活一定时间是否对核心线程有效(默认为false),先看它为ture的情况,此时不管是核心线程还是非核心线程在3处都会等待一定时间(就是我们传入的线程保活时间),等待时间内如果从任务队列取到任务,则返回执行,否则timeout为true,继续走到2,由于(timed && timedOut)和workQueue.isEmpty()均为true,返回null,代表回收一个线程;如果allowCoreThreadTimeOut为false,代表不回收核心线程,此时如果在3处没有取到任务,继续执行到2处,只有当wc > corePoolSize或wc > maximumPoolSize时才会执行return null,否则一直循环,相当于该线程一直处于运行状态,直到从任务队列拿到新的任务

到此这篇关于Android线程池源码阅读记录介绍的文章就介绍到这了,更多相关Android线程池内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Android线程池控制并发数多线程下载

    多线程下载并不是并发下载线程越多越好,因为当用户开启太多的并发线程之后,应用程序需要维护每条线程的开销,线程同步的开销. 这些开销反而会导致下载速度降低.因此需要避免在代码中直接开启大量线程执行下载. 主要实现步奏: 1.定义一个DownUtil类,下载工作基本在此类完成,在构造器中初始化UI线程的Handler.用于子线程和UI线程传递下载进度值. 2.所有的下载任务都保存在LinkedList.在init()方法中开启一个后台线程,不断地从LinkedList中取任务交给线程池中的空闲线程执

  • 浅谈Android中线程池的管理

    说到线程就要说说线程机制 Handler,Looper,MessageQueue 可以说是三座大山了 Handler Handler 其实就是一个处理者,或者说一个发送者,它会把消息发送给消息队列,也就是Looper,然后在一个无限循环队列中进行取出消息的操作 mMyHandler.sendMessage(mMessage); 这句话就是我耗时操作处理完了,我发送过去了! 然后在接受的地方处理!简单理解是不是很简单. 一般我们在项目中异步操作都是怎么做的呢? // 这里开启一个子线程进行耗时操作

  • Android开发经验谈:并发编程(线程与线程池)(推荐)

    一.线程 在Android开发中,你不可能都在主线程中开发,毕竟要联网,下载数据,保存数据等操作,当然这就离不开线程. (当然你可以在Android4.0以前的手机里在主线程请求网络,我最早开发的时候,用的手机比较古老...) 在Android中你可以随意创建线程,于是就会造成线程不可控,内存泄漏,创建线程消耗资源,线程太多了消耗资源等问题. 具体线程怎么创建我就不在文章里描述了,毕竟这主要将并发编程.... 大家知道线程不可控就好了...于是就需要对线程进行控制,防止一系列问题出现,这就用到了

  • Android开发中线程池源码解析

    线程池(英语:thread pool):一种线程使用模式.线程过多会带来调度开销,进而影响缓存局部性和整体性能.而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务.这避免了在处理短时间任务时创建与销毁线程的代价.线程池不仅能够保证内核的充分利用,还能防止过分调度.可用线程数量应该取决于可用的并发处理器.处理器内核.内存.网络sockets等的数量. 例如,线程数一般取cpu数量+2比较合适,线程数过多会导致额外的线程切换开销.----摘自维基百科 我们在Android或者Java开发中

  • 分析Android中线程和线程池

    目录 前言 HandlerThread IntentService 线程池的好处 ThreadPoolExecutor 线程池的分类 FixedThreadPool CachedThreadPool ScheduledThreadPool SingleThreadExecutor 前言 由于内容过多,所以将分为上下两部分,第一部分主要和大家谈谈Android中的线程,以及在Android中的常用的线程池.第二部分我们一起来了解一下AsyncTask的使用和工作原理. HandlerThread

  • Android线程池源码阅读记录介绍

    今天面试被问到线程池如何复用线程的?当场就懵掉了...于是面试完毕就赶紧打开源码看了看,在此记录下: 我们都知道线程池的用法,一般就是先new一个ThreadPoolExecutor对象,再调用execute(Runnable runnable)传入我们的Runnable,剩下的交给线程池处理就行了,于是这次我就从ThreadPoolExecutor的execute方法看起: public void execute(Runnable command) { if (command == null)

  • nginx线程池源码分析

    周末看了nginx线程池部分的代码,顺手照抄了一遍,写成了自己的版本.实现上某些地方还是有差异的,不过基本结构全部摘抄. 在这里分享一下.如果你看懂了我的版本,也就证明你看懂了nginx的线程池. 本文只列出了关键数据结构和API,重在理解nginx线程池设计思路.完整代码在最后的链接里. 1.任务节点 typedef void (*CB_FUN)(void *); //任务结构体 typedef struct task { void *argv; //任务函数的参数(任务执行结束前,要保证参数

  • Java终止线程实例和stop()方法源码阅读

    了解线程 概念 线程 是程序中的执行线程.Java 虚拟机允许应用程序并发地运行多个执行线程. 线程特点 拥有状态,表示线程的状态,同一时刻中,JVM中的某个线程只有一种状态; ·NEW 尚未启动的线程(程序运行开始至今一次未启动的线程) ·RUNNABLE 可运行的线程,正在JVM中运行,但它可能在等待其他资源,如CPU. ·BLOCKED 阻塞的线程,等待某个锁允许它继续运行 ·WAITING 无限等待(再次运行依赖于让它进入该状态的线程执行某个特定操作) ·TIMED_WAITING 定时

  • Nacos源码阅读方法

    为什么我会经常阅读源码呢,因为阅读源码能让你更加接近大佬,哈哈,这是我瞎扯的. 这篇文章将会带大家阅读Nacos源码 以及 教大家阅读源码的技巧,我们正式开始吧! 先给大家献上一张我梳理的高清源码图,方便大家对nacos的源码有一个整体上的认识. 有了这张图,我们就很容易去看nacos源码了. 如何找切入点 首先我们得要找一个切入点进入到nacos源码中,那么就从nacos依赖入手 <dependency> <groupId>com.alibaba.cloud</groupI

  • Eureka源码阅读解析Server服务端启动流程实例

    目录 环境 1.spring cloud整合eureka server demo 1.1 新建spring boot项目 pom.xml文件添加 配置文件 1.2 启动类 1.3 启动 2. spring cloud自动装配eureka server源码解析 2.1 @EnableEurekaServer注解 2.2 EurekaServerAutoConfiguration 2.2.1 查找starter 自动装配类的技巧 2.2.2 EurekaServerAutoConfiguration

  • Eureka源码阅读Client启动入口注册续约及定时任务

    目录 引言 1.环境 2. Spring Cloud整合Eureka Client 启动入口 2.1 封装配置文件的类 2.1.1 EurekaClientConfigBean 2.1.2 EurekaInstanceConfigBean 2.2 EurekaClient 2.2.1 ApplicationInfoManager 2.2.2 EurekaClient 2.3 小结 3. DiscoveryClient类的解析 3.1 DiscoveryClient 作用 3.2 Discover

  • Android 网络html源码查看器详解及实例

    Android 网络html源码查看器详解及实例 IO字节流的数据传输了解 Handler的基本使用 1.作品展示 2.需要掌握的知识 FileInputStream,FIleOutputStream,BufferInputStream,BufferOutStream的读写使用与区别 //进行流的读写 byte[] buffer = new byte[1024 * 8]; //创建一个写到内存的字节数组输出流 ByteArrayOutputStream byteArrayOutputStream

  • 源码阅读之storm操作zookeeper-cluster.clj

    storm操作zookeeper的主要函数都定义在命名空间backtype.storm.cluster中(即cluster.clj文件中). backtype.storm.cluster定义了两个重要protocol:ClusterState和StormClusterState. clojure中的protocol可以看成java中的接口,封装了一组方法.ClusterState协议中封装了一组与zookeeper进行交互的基础函数,如获取子节点函数,获取子节点数据函数等,ClusterStat

  • Android Studio查看Android 5.x源码的步骤详解

    关于Android Studio的好处我就不用说了,下面两点就足矣让你转投Android Studio了: 1.Android Studio是Google官方指定的,目前官网已经去掉了ADT, 大家可以在Android开发者官网 中进行查看,目前只有Android Studio提供下载了. 2.Google也表示ADT不再进行维护了. 转投Android Studio时大势所趋,网上关于如何使用Android Studio的帖子也是满天飞,所以我就不再啰嗦夸奖Android Studio了. 这

随机推荐