Laravel + Elasticsearch 实现中文搜索的方法

Elasticsearch

Elasticsearch 是一个基于 Apache Lucene(TM) 的开源搜索引擎,无论在开源还是专有领域,Lucene可 以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。

但是,Lucene 只是一个库。想要发挥其强大的作用,你需使用 Java 并要将其集成到你的应用中。Lucene 非常复杂,你需要深入的了解检索相关知识来理解它是如何工作的。

Elasticsearch 也是使用 Java 编写并使用 Lucene 来建立索引并实现搜索功能,但是它的目的是通过简单连贯的 RESTful API 让全文搜索变得简单并隐藏 Lucene 的复杂性。

不过,Elasticsearch 不仅仅是 Lucene 和全文搜索引擎,它还提供:

  • 分布式的实时文件存储,每个字段都被索引并可被搜索
  • 实时分析的分布式搜索引擎
  • 可以扩展到上百台服务器,处理PB级结构化或非结构化数据

而且,所有的这些功能被集成到一台服务器,你的应用可以通过简单的 RESTful API、各种语言的客户端甚至命令行与之交互。上手 Elasticsearch 非常简单,它提供了许多合理的缺省值,并对初学者隐藏了复杂的搜索引擎理论。它开箱即用(安装即可使用),只需很少的学习既可在生产环境中使用。

Elasticsearch 在 Apache 2 license 下许可使用,可以免费下载、使用和修改。

ElasticSearch 安装

在 Laradock 中已经集成了 ElasticSearch。我们可以直接使用:

docker-compose up -d elasticsearch

如果需要安装插件,执行命令:

docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install {plugin-name}

// 重启容器
docker-compose restart elasticsearch

注:

The vm.max_map_count kernel setting must be set to at least 262144 for production use.

由于我是 centos 7 环境,直接设置在系统设置:
sysctl -w vm.max_map_count=262144

默认用户名和密码:「elastic」、「changeme」,端口号:9200

ElasticHQ

ElasticHQ is an open source application that offers a simplified interface for managing and monitoring Elasticsearch clusters.

Management and Monitoring for Elasticsearch.

http://www.elastichq.org/

  • Real-Time Monitoring
  • Full Cluster Management
  • Full Cluster Monitoring
  • Elasticsearch Version Agnostic
  • Easy Install - Always On
  • Works with X-Pack

输入我们的 Elasticsearch Host,即可进入后台。

默认的创建了:

一个集群 cluster:laradock-cluster
一个节点 node:laradock-node
一个索引 index:.elastichq

IK 分词器安装

ElasticSearch 主要是用于自己 blog 或者公众号文章的搜索使用,所以需要选择一个中文分词器配合使用,这里刚开始推荐使用 IK 分词器,下面开始安装对应 ElasticSearch版本 (7.5.1) 一致的插件:

https://github.com/medcl/elasticsearch-analysis-ik/releases

// 安装插件
docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.5.1/elasticsearch-analysis-ik-7.5.1.zip

注:可以将 zip 文件先下载回来,然后再安装,速度会快些。

检验分词效果

根据 Elasticsearch API 测试,分词的效果达到了:

 ~ curl -X POST "http://your_host/_analyze?pretty" -H 'Content-Type: application/json' -d'
{
 "analyzer": "ik_max_word",
 "text":   "我是中国人"
}
'

{
 "tokens" : [
  {
   "token" : "我",
   "start_offset" : 0,
   "end_offset" : 1,
   "type" : "CN_CHAR",
   "position" : 0
  },
  {
   "token" : "是",
   "start_offset" : 1,
   "end_offset" : 2,
   "type" : "CN_CHAR",
   "position" : 1
  },
  {
   "token" : "中国人",
   "start_offset" : 2,
   "end_offset" : 5,
   "type" : "CN_WORD",
   "position" : 2
  },
  {
   "token" : "中国",
   "start_offset" : 2,
   "end_offset" : 4,
   "type" : "CN_WORD",
   "position" : 3
  },
  {
   "token" : "国人",
   "start_offset" : 3,
   "end_offset" : 5,
   "type" : "CN_WORD",
   "position" : 4
  }
 ]
}

结合 Laravel

虽然 Elasticsearch 官方提供了对应的 PHP 版本的插件,但我们还是希望和 Laravel 结合的更紧密些,所以这里选择和 Scout 结合使用,具体用到了 tamayo/laravel-scout-elastic 插件。

composer require tamayo/laravel-scout-elastic

composer require laravel/scout

php artisan vendor:publish

选择:Laravel\Scout\ScoutServiceProvider

修改驱动为 elasticsearch

'driver' => env('SCOUT_DRIVER', 'elasticsearch'),

创建索引

创建索引有几种方法,其中可以使用 Ela 可视化工具 ElasticHQ 直接创建。

接下来我们需要更新这个索引,补充 Mappings 这部分,可以用 Postman。

另一种方法是用 Laravel 自带的 Artisan 命令行功能。

这里我们推荐使用 Artisan 命令行。

php artisan make:command ESOpenCommand

根据官网提示,我们可以在 ESOpenCommand 上向 Elasticsearch 服务器发送 PUT 请求,这里借助 Elasticsearch 提供的 PHP 插件,在我们使用 tamayo/laravel-scout-elastic 插件时,已经安装了 Elasticsearch PHP 插件:

下面就可以借助插件,创建我们的 Index,直接看代码:

 public function handle()
  {
  $host = config('scout.elasticsearch.hosts');
  $index = config('scout.elasticsearch.index');
  $client = ClientBuilder::create()->setHosts($host)->build();

  if ($client->indices()->exists(['index' => $index])) {
    $this->warn("Index {$index} exists, deleting...");
    $client->indices()->delete(['index' => $index]);
  }

  $this->info("Creating index: {$index}");

  return $client->indices()->create([
    'index' => $index,
    'body' => [
      'settings' => [
        'number_of_shards' => 1,
        'number_of_replicas' => 0
      ],
      'mappings' => [
        '_source' => [
          'enabled' => true
        ],
        'properties' => [
          'id' => [
            'type' => 'long'
          ],
          'title' => [
            'type' => 'text',
            'analyzer' => 'ik_max_word',
            'search_analyzer' => 'ik_smart'
          ],
          'subtitle' => [
            'type' => 'text',
            'analyzer' => 'ik_max_word',
            'search_analyzer' => 'ik_smart'
          ],
          'content' => [
            'type' => 'text',
            'analyzer' => 'ik_max_word',
            'search_analyzer' => 'ik_smart'
          ]
        ],
      ]
    ]
  ]);
}

好了,我们执行 Kibana 看到我们已经创建好了 Index:

注 Kibana 本地 Docker 安装:

后续会重点说明 Kibana 如何使用

docker run -d --name kibana -e ELASTICSEARCH_HOSTS=http://elasticsearch_host -p 5601:5601 -e SERVER_NAME=ki.test kibana:7.5.2

为了验证 Index 是否可用,可以插入一条数据看看:

curl -XPOST your_host/coding01_open/_create/1 -H 'Content-Type:application/json' -d'
{"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"}

可以通过浏览器看看对应的数据:

有了 Index,下一步我们就可以结合 Laravel,导入、更新、查询等操作了。

Laravel Model 使用

Laravel 框架已经为我们推荐使用 Scout 全文搜索,我们只需要在 Article Model 加上官方所说的内容即可,很简单,推荐大家看 Scout 使用文档:https://learnku.com/docs/laravel/6.x/scout/5191,下面直接上代码:

<?php

namespace App;

use App\Tools\Markdowner;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;
use Laravel\Scout\Searchable;

class Article extends Model
{
  use Searchable;

  protected $connection = 'blog';
  protected $table = 'articles';
  use SoftDeletes;

  /**
   * The attributes that should be mutated to dates.
   *
   * @var array
   */
  protected $dates = ['published_at', 'created_at', 'deleted_at'];

  /**
   * The attributes that are mass assignable.
   *
   * @var array
   */
  protected $fillable = [
    'user_id',
    'last_user_id',
    'category_id',
    'title',
    'subtitle',
    'slug',
    'page_image',
    'content',
    'meta_description',
    'is_draft',
    'is_original',
    'published_at',
    'wechat_url',
  ];

  protected $casts = [
    'content' => 'array'
  ];

  /**
   * Set the content attribute.
   *
   * @param $value
   */
  public function setContentAttribute($value)
  {
    $data = [
      'raw' => $value,
      'html' => (new Markdowner)->convertMarkdownToHtml($value)
    ];

    $this->attributes['content'] = json_encode($data);
  }

  /**
   * 获取模型的可搜索数据
   *
   * @return array
   */
  public function toSearchableArray()
  {
    $data = [
      'id' => $this->id,
      'title' => $this->title,
      'subtitle' => $this->subtitle,
      'content' => $this->content['html']
    ];

    return $data;
  }

  public function searchableAs()
  {
    return '_doc';
  }
}

Scout 提供了 Artisan 命令 import 用来导入所有已存在的记录到搜索索引中。

php artisan scout:import "App\Article"

看看 Kibana,已存入 12 条数据,和数据库条数吻合。

有了数据,我们可以测试看看能不能查询到数据。

还是一样的,创建一个命令:

class ElasearchCommand extends Command
{
  /**
   * The name and signature of the console command.
   *
   * @var string
   */
  protected $signature = 'command:search {query}';

  /**
   * The console command description.
   *
   * @var string
   */
  protected $description = 'Command description';

  /**
   * Create a new command instance.
   *
   * @return void
   */
  public function __construct()
  {
    parent::__construct();
  }

  /**
   * Execute the console command.
   *
   * @return mixed
   */
  public function handle()
  {
    $article = Article::search($this->argument('query'))->first();
    $this->info($article->title);
  }
}

这是我的 titles,我随便输入一个关键字:「清单」,看是否能搜到。

总结

整体完成了:

  • Elasticsearch 安装;
  • Elasticsearch IK 分词器插件安装;
  • Elasticsearch 可视化工具 ElasticHQ 和 Kibana 的安装和简单使用;
  • Scout 的使用;
  • Elasticsearch 和 Scout 结合使用。

接下来就要将更多的内容存入 Elasticsearch 中,为自己的 blog、公众号、自动化搜索等场景提供全文搜索。

参考

推荐一个命令行应用开发工具——Laravel Zero

Artisan 命令行 https://learnku.com/docs/laravel/6.x/artisan/5158

Scout 全文搜索 https://learnku.com/docs/laravel/6.x/scout/5191

How to integrate Elasticsearch in your Laravel App – 2019 edition https://madewithlove.be/how-to-integrate-elasticsearch-in-your-laravel-app-2019-edition/

Kibana Guide https://www.elastic.co/guide/en/kibana/index.html

elasticsearch php-api [https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/index.html](https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/index.html)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Django项目之Elasticsearch搜索引擎的实例

    1.使用Docker安装Elasticsearch及其扩展 获取镜像,可以通过网络pull sudo docker image pull delron/elasticsearch-ik:2.4.6-1.0 或者加载镜像文件 sudo docker load -i elasticsearch-ik-2.4.6_docker.tar 修改elasticsearch的配置文件 elasticsearc-2.4.6/config/elasticsearch.yml第54行,更改ip地址为本机ip地址 n

  • Python-ElasticSearch搜索查询的讲解

    Elasticsearch 是一个开源的搜索引擎,建立在一个全文搜索引擎库 Apache Lucene™ 基础之上. Lucene 可能是目前存在的,不论开源还是私有的,拥有最先进,高性能和全功能搜索引擎功能的库.但是 Lucene 仅仅只是一个库.为了利用它,你需要编写 Java 程序,并在你的 java 程序里面直接集成 Lucene 包. 更坏的情况是,你需要对信息检索有一定程度的理解才能明白 Lucene 是怎么工作的.Lucene 是 很 复杂的. 在上一篇文章中介绍了ElasticS

  • Laravel使用scout集成elasticsearch做全文搜索的实现方法

    本文介绍了Laravel使用scout集成elasticsearch做全文搜索的实现方法,分享给大家,具体如下: 安装需要的组件 composer require tamayo/laravel-scout-elastic composer require laravel/scout 如果composer require laravel/scout 出现报错 Using version ^6.1 for laravel/scout ./composer.json has been updated

  • Spring Boot整合Elasticsearch实现全文搜索引擎案例解析

    简单说,ElasticSearch(简称 ES)是搜索引擎,是结构化数据的分布式搜索引擎.Elastic Search是一个开源的,分布式,实时搜索和分析引擎.Spring Boot为Elasticsearch及Spring Data Elasticsearch提供的基于它的抽象提供了基本的配置.Spring Boot提供了一个用于聚集依赖的spring-boot-starter-data-elasticsearch 'StarterPOM'. 引入spring-boot-starter-dat

  • springboot2.0+elasticsearch5.5+rabbitmq搭建搜索服务的坑

    前一阵子准备为项目搭建一个简单的搜索服务,虽然业务数据库mongodb提供了文本搜索的支持,但是在大量文档需要通过关键词进行定位时,es明显更加适合去作为一个搜索引擎(虽然我们之前大部分使用到了ELK那套分析和可视化的特性).Elasticsearch建立在Lucene之上并且支持极其快速的查询和丰富的查询语法,偶尔也可以作为一个轻量级的NoSQL.但是对复杂查询和聚合操作的能力并不是很强. 本篇不会提及如何搭建一个简单搜索服务,而是记录一下大约一周工作时间内遇见的几个坑.. 为什么选择elas

  • Spring Boot集成ElasticSearch实现搜索引擎的示例

    Elastic Search是一个开源的,分布式,实时搜索和分析引擎.Spring Boot为Elasticsearch及Spring Data Elasticsearch提供的基于它的抽象提供了基本的配置.Spring Boot提供了一个用于聚集依赖的spring-boot-starter-data-elasticsearch 'StarterPOM'. ElasticSearch作为搜索引擎,我们需要解决2大问题: 1,  如何将被搜索的数据在ES上创建反向索引 2,  Java代码如何与E

  • 使用ElasticSearch6.0快速实现全文搜索功能的示例代码

    本文不涉及ElasticSearch具体原理,只记录如何快速的导入mysql中的数据进行全文检索. 工作中需要实现一个搜索功能,并且导入现有数据库数据,组长推荐用ElasticSearch实现,网上翻一通教程,都是比较古老的文章了,无奈只能自己摸索,参考ES的文档,总算是把服务搭起来了,记录下,希望有同样需求的朋友可以少走弯路,能按照这篇教程快速的搭建一个可用的ElasticSearch服务. ES的搭建 ES搭建有直接下载zip文件,也有docker容器的方式,相对来说,docker更适合我们

  • Spring Boot与Kotlin 整合全文搜索引擎Elasticsearch的示例代码

    Elasticsearch 在全文搜索里面基本是无敌的,在大数据里面也很有建树,完全可以当nosql(本来也是nosql)使用. 这篇文章简单介绍Spring Boot使用Kotlin语言连接操作 Elasticsearch.但是不会做很详细的介绍,如果要深入了解Elasticsearch在Java/kotlin中的使用,请参考我之前编写的<Elasticsearch Java API 手册> https://gitee.com/quanke/elasticsearch-java/ 里面包含使

  • django使用haystack调用Elasticsearch实现索引搜索

    前言: 在做一个商城项目的时候,需要实现商品搜索功能. 说到搜索,第一时间想到的是数据库的 select * from tb_sku where name like %苹果手机% 或者django的 SKU.objects.filter(name__contains="苹果手机") 但是,假如你的数据库有几千万条数据,name字段没有索引,可能查询需要十几分钟,用户可能会等你?那为什么不给name字段增加索引?商品表不仅仅是用来查询,也会经常修改数据,新增删除数据等.建立索引后,做增删

  • 安装ElasticSearch搜索工具并配置Python驱动的方法

    ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是第二流行的企业搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便. 我们建立一个网站或应用程序,并要添加搜索功能,令我们受打击的是:搜索工作是很难的.我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单

  • 基于Lucene的Java搜索服务器Elasticsearch安装使用教程

    一.安装Elasticsearch Elasticsearch下载地址:http://www.elasticsearch.org/download/ ·下载后直接解压,进入目录下的bin,在cmd下运行elasticsearch.bat 即可启动Elasticsearch ·用浏览器访问: http://localhost:9200/   ,如果出现类似如下结果则说明安装成功: { "name" : "Benedict Kine", "cluster_na

随机推荐