Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观、清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3

柱状图

基本柱状图

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏
# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件

堆叠柱状图

# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')

并列柱形图

# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

横向并列柱形图

# 横向并列柱形图

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

以上相关柱状图完整代码bar_demo.py

from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark') # 暗黑色主题
bar.add('真实成本',  # label
    ["1月", "2月", "3月", "4月", "5月", "6月"],  # 横坐标
    [5, 20, 36, 10, 75, 90],    # 纵坐标
    is_more_utils=True)  # 设置最右侧工具栏

# bar.show_config()    # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html') # 生成html文件

# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)  # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')

# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average']) # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max']) # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add('商家2', x_attr, data2, is_convert=True) # is_convert=True :X轴与Y轴交换
bar3.render('bar3_demo.html')

折线图、饼图、词云图

导入模块 与 基础数据

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

基础折线示例图

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

折线面积图

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

饼图

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

词云图

# 词云图
name = [
    'Though', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

线性闪烁图 —组合图

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

以上相关图完整代码line_pie_demo.py

from pyecharts import Line
from pyecharts import Pie
from pyecharts import WordCloud
from pyecharts import EffectScatter, Overlap

x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]

# 折线示例图
line = Line("折线示例图")
line.add('商家1', x_attr, data1, mark_point=['average'])
line.add('商家2', x_attr, data2, is_smooth=True, mark_line=['max', 'average'])
line.render('line.demo.html')

# 折线面积图
line = Line('折线面积示例图')
line.add('商家1', x_attr, data1, is_fill=True,line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add('商家2', x_attr, data2, line_color='#000', area_opacity=0.3, is_smooth=True)
line.render('line2_demo.html')

# 饼图
pie = Pie('饼图')
pie.add('', x_attr, data1, is_label_show=True)
pie.render('pie_demo.html')

# 词云图
name = [
    'Python', 'the answer', 'this question',
    'may at first', 'seem to border', 'on the',
    'absurd', 'reflection', 'will show', 'that there',
    'is a', 'good deal', 'more in', 'it than meets', 'the eye'
    ]
value = [10000, 6189, 4556, 2356, 2233,
     1895, 1456, 1255, 981, 875,
     542, 462, 361, 265, 125]

worldcloud = WordCloud(width=1300, height=620)
worldcloud.add('词云', name, value, word_size_range=[20, 100])
worldcloud.render('worldcloud.html')

# 线性闪烁图
line2 = Line('线性闪烁图')
line2.add('line', x_attr, data1, is_random=True)

es = EffectScatter()
es.add('es', x_attr, data1, effect_scale=8) # 闪烁
overlop = Overlap()
overlop.add(line2)   # 必须先添加line 再添加 es
overlop.add(es)
overlop.render('line-es.html')

更多关于Python数据可视化处理库PyEcharts使用方法与实例请查看下面的相关链接

(0)

相关推荐

  • 基于Python安装pyecharts所遇的问题及解决方法

    最近学习到数据可视化内容,老师推荐安装pyecharts,于是pip install 了一下,结果...掉坑了,下面是我的跳坑经验,如果你有类似问题,希望对你有所帮助. 第一个坑: 这个不难理解,缺少pyecharts-jupyter-installer嘛,那就安一个呗.可能有人注意到,我使用的是python2 -m pip ...(这种写法是为了解决python 2和3共存时pip的冲突问题,具体解释在本页最后.) 本以为结束了,却掉进了第二个坑: 看到这个,很明显是安装MarkupSafe时

  • Python数据可视化 pyecharts实现各种统计图表过程详解

    1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

  • python的pyecharts绘制各种图表详细(附代码)

    环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg 数据:2018年4月16号的全国各地最高最低和天气类型的数据--2018-4-16.json(爬虫爬的) 代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件) 一.公共属性 1.标题栏的属性:一般在实例化(初始化)类

  • Python 数据可视化pyecharts的使用详解

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe

  • Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

    python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观.清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3 柱状图 基本柱状图 from pyecharts import Bar # 基本柱状图 bar = Bar("基本柱状图", "副标题") bar.use_theme('dark') # 暗黑色主题 bar.add('真实成本', # label ["1月&q

  • Python数据可视化之基于pyecharts实现的地理图表的绘制

    一.例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目.百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态.即时.直观地展现中国春节前后人口大迁徙的轨迹与特征. 网址:https://qianxi.baidu.com/2021/ 二.基础语法介绍 语法 说明 from pyecharts.charts import Geo 导入地图库 Geo() Pyecharts地理图表绘制 .add_

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • python数据可视化plt库实例详解

    先看下jupyter和pycharm环境的差别 左边是jupyter----------------------------------------------------------右边是pycharm 以下都是使用pycharm环境 1.一个窗口画出一个线性方程 import numpy as np import matplotlib.pyplot as plt x = np.linspace(0,1,11)# 从0到1,个数为11的等差数列 print(x) y = 2*x plt.plo

  • python标准库sys和OS的函数使用方法与实例详解

    python标准库sys sys模块包括了一组非常实用的服务,内含很多函数方法和变量,用来处理Python运行时配置以及资源,从而可以与前当程序之外的系统环境交互,如:python解释器. sys模块的常见函数列表(import sys): 函数 说明 dir(sys) dir()方法查看模块中可用的方法.注意:如果是在编辑器,一定要注意要事先声明代码的编码方式,否则中文会乱码. sys.argv 实现从程序外部向程序传递参数 sys.exit([arg]) 程序中间的退出,arg=0为正常退出

  • python GUI库图形界面开发之PyQt5拖放控件实例详解

    本篇,我们学习PyQt5界面中拖放(Drag 和Drop)控件. 拖放动作 在GUI中,拖放指的是点击一个对象,并将其拖动到另一个对象上的动作.比如百度云PC客户端支持的拖放文件以快速移动文件: 拖放动作能够很直观很方便的在GUI程序中完成一些很复杂或繁琐的操作. 在PyQt中实现拖放 在PyQt5中,我们也可以很轻松地使用拖放功能. 使用Qt设计师或者使用API都可以实现.我们先使用Qt设计师将GUI的图形设计出来,在之前的GUI的基础上,我们新建一个选项卡. 我们新建了一个选项卡,然后在里面

  • echarts饼图指示器文字颜色设置不同实例详解

    目录 echarts饼图label文字颜色 问题 解决方法 饼图位置 总结 学习记录,平时开发时遇到过的问题 echarts饼图label文字颜色 需求: 绘制一份环形饼状图,并且有指示器文本标签(文字的颜色需要和各部分相同) 数据: pieData: [ { name: '犯人', value: 30 }, { name: '官差', value: 35 }, { name: '平民', value: 35 }, ], // 颜色 colorList: ['#EA7267', '#F0D84B

  • Python多线程操作之互斥锁、递归锁、信号量、事件实例详解

    本文实例讲述了Python多线程操作之互斥锁.递归锁.信号量.事件.分享给大家供大家参考,具体如下: 互斥锁: 为什么要有互斥锁:由于多线程是并行的,如果某一线程取出了某一个数据将要进行操作,但它还没有那么快执行完操作,这时候如果另外一个线程也要操作这个数据,那么这个数据可能会因为两次操作而发生错误 import time,threading x=6 def run1(): print("run1我拿到了数据:",x) print("我现在还不想操作,先睡一下")

  • 使用GSON库转换Java对象为JSON对象的进阶实例详解

    对List和map等结构的常用转换操作基本上可以满足我们处理的绝大多数需求,但有时项目中对json有特殊的格式规定.比如下面的json串解析: [{"tableName":"students","tableData":[{"id":1,"name":"李坤","birthDay":"Jun 22, 2012 9:54:49 PM"},{"

  • python数据结构之图深度优先和广度优先实例详解

    本文实例讲述了python数据结构之图深度优先和广度优先用法.分享给大家供大家参考.具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回

随机推荐