tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现

在Python代码中指定GPU

import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置定量的GPU使用量:

config = tf.ConfigProto()

config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存

session = tf.Session(config=config)

设置最小的GPU使用量:

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

session = tf.Session(config=config)

以上这篇tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 运行tensorflow python程序,限制对GPU和CPU的占用操作

    一般情况下,运行tensorflow时,默认会占用可以看见的所有GPU,那么就会导致其它用户或程序无GPU可用,那么就需要限制程序对GPU的占用.并且,一般我们的程序也用不了所有的GPU资源,只是强行霸占着,大部分资源都不会用到,也不会提升运行速度. 使用nvidia-smi可以查看本机的GPU使用情况,如下图,这里可以看出,本机的GPU型号是K80,共有两个K80,四块可用(一个K80包括两块K40). 1.如果是只需要用某一块或某几块GPU,可以在运行程序时,利用如下命令运行:CUDA_VI

  • tensorflow指定GPU与动态分配GPU memory设置

    在tensorflow中,默认指定占用所有的GPU,如需指定占用的GPU,可以在命令行中: export CUDA_VISIBLE_DEVICES=1 这样便是只占用1号GPU,通过命令 nvidia-smi 可以查看各个GPU的使用情况. 另外,也可以在python程序中指定GPU,并且动态分配memory,代码如下 import os import sys os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1] import tensorflow a

  • tensorflow使用指定gpu的方法

    TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1]  . Tensorflow拥有多层级结构,可部署于各类服务器.PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 . TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括Ten

  • 检测tensorflow是否使用gpu进行计算的方式

    如下所示: import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 查看日志信息若包含gpu信息,就是使用了gpu. 其他方法:跑计算量大的代码,通过 nvidia-smi 命令查看gpu的内存使用量. 以上这篇检测tensorflow是否使用gpu进行计算的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • tensorflow 限制显存大小的实现

    Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的. 用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了. 1. 按比例预留: tf_config = tensorflow.ConfigProto() tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% session = tensorflo

  • tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现

    在Python代码中指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" 设置定量的GPU使用量: config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存 session = tf.Session(config=config) 设置最小的GPU使用量: config =

  • 基于tensorflow指定GPU运行及GPU资源分配的几种方式小结

    1. 在终端执行时设置使用哪些GPU(两种方式) (1) 如下(export 语句执行一次就行了,以后再运行代码不用执行) (2) 如下 2. 代码中指定(两种方式) (1) import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" (2) # Creates a graph. with tf.device('/gpu:1'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],

  • tensorflow指定CPU与GPU运算的方法实现

    1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行.with......device语句能够用来指派特定的CPU或者GPU执行操作: import tensorflow as tf import numpy as np w

  • 解决Tensorflow占用GPU显存问题

    我使用Pytorch进行模型训练时发现真正模型本身对于显存的占用并不明显,但是对应的转换为tensorflow后(权重也进行了转换),发现Python-tensorflow在使用时默认吃掉所有显存,并且不手动终结程序的话显存并不释放(我有两个序贯的模型,前面一个跑完后并不释放占用显存)(https://github.com/tensorflow/tensorflow/issues/1727),这一点对于后续的工作有很大的影响. 后面发现python-tensorflow限制显存有两种方法: 1.

  • 关于Theano和Tensorflow多GPU使用问题

    我使用的是tensorflow-gpu (1.2.1)和Theano (0.9.0),2个4G显存Nvidia Quadro M2000 GPU. 1. theano: ValueError: Could not infer context from inputs THEANO_FLAGS="contexts=dev0->cuda0;dev1->cuda1,gpuarray.preallocate=0.95,mode=FAST_RUN,floatX=float32,on_unused

  • 解决Keras TensorFlow 混编中 trainable=False设置无效问题

    这是最近碰到一个问题,先描述下问题: 首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新 以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题. trai

  • pytorch使用指定GPU训练的实例

    本文适合多GPU的机器,并且每个用户需要单独使用GPU训练. 虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到out of memory的问题,主要是因为pytorch会在第0块gpu上初始化,并且会占用一定空间的显存.这种情况下,经常会出现指定的gpu明明是空闲的,但是因为第0块gpu被占满而无法运行,一直报out of memory错误. 解决方案如下: 指定环境变量,屏蔽第0块gpu CUDA_VISIBLE_DEVICES = 1 main.py 这句话表示只有第1块

  • 在pytorch中为Module和Tensor指定GPU的例子

    pytorch指定GPU 在用pytorch写CNN的时候,发现一运行程序就卡住,然后cpu占用率100%,nvidia-smi 查看显卡发现并没有使用GPU.所以考虑将模型和输入数据及标签指定到gpu上. pytorch中的Tensor和Module可以指定gpu运行,并且可以指定在哪一块gpu上运行,方法非常简单,就是直接调用Tensor类和Module类中的 .cuda() 方法. import torch from PIL import Image import torch.nn as

随机推荐