python使用celery实现异步任务执行的例子

使用celery在django项目中实现异步发送短信

在项目的目录下创建celery_tasks用于保存celery异步任务。

在celery_tasks目录下创建config.py文件,用于保存celery的配置信息

 ```broker_url = "redis://127.0.0.1/14"```

在celery_tasks目录下创建main.py文件,用于作为celery的启动文件

from celery import Celery
 # 为celery使用django配置文件进行设置

import os
if not os.getenv('DJANGO_SETTINGS_MODULE'):
  os.environ['DJANGO_SETTINGS_MODULE'] = 'model.settings.dev'

 # 创建celery应用

app = Celery('model')

 #导入celery配置

app.config_from_object('celery_tasks.config')
 #自动注册celery任务
app.autodiscover_tasks(['celery_tasks.sms'])

在celery_tasks目录下创建sms目录,用于放置发送短信的异步任务相关代码。

将提供的发送短信的云通讯SDK放到celery_tasks/sms/目录下。

在celery_tasks/sms/目录下创建tasks.py(这个名字是固定的,非常重要,系统将会自动从这个文件中找任务队列)文件,用于保存发送短信的异步任务

  import logging

  from celery_tasks.main import app
  from .yuntongxun.sms import CCP

  logger = logging.getLogger("django")

   #验证码短信模板
  SMS_CODE_TEMP_ID = 1

  @app.task(name='send_sms_code')
    def send_sms_code(mobile, code, expires):

  发送短信验证码
  :param mobile: 手机号
  :param code: 验证码
  :param expires: 有效期
  :return: None

  try:
    ccp = CCP()
    result = ccp.send_template_sms(mobile, [code, expires], SMS_CODE_TEMP_ID)
  except Exception as e:
    logger.error("发送验证码短信[异常][ mobile: %s, message: %s ]" % (mobile, e))
  else:
    if result == 0:
      logger.info("发送验证码短信[正常][ mobile: %s ]" % mobile)
    else:
      logger.warning("发送验证码短信[失败][ mobile: %s ]" % mobile)

在verifications/views.py中改写SMSCodeView视图,使用celery异步任务发送短信

from celery_tasks.sms import tasks as sms_tasks

class SMSCodeView(GenericAPIView):
  ...
    # 发送短信验证码 这是将时间转化为分钟,constants.SMS_CODE_REDIS_EXPIRES 是常量
    sms_code_expires = str(constants.SMS_CODE_REDIS_EXPIRES // 60)

    sms_tasks.send_sms_code.delay(mobile, sms_code, sms_code_expires)

    return Response({"message": "OK"})

以上这篇python使用celery实现异步任务执行的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 异步任务队列Celery在Django中的使用方法

    前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队列框架,鉴于网上关于Celery和Django结合的文档较少,大部分也只是粗粗介绍了大概的流程,在实践过程中还是遇到了不少坑,希望记录下来帮助有需要的朋友. 一.Django中的异步请求 Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 --

  • Django使用Celery异步任务队列的使用

    1 Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收的工作任务,这个功能依赖于消息队列(MQ.Redis). 1.1 Celery原理 Celery的 架构 由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 消息中间件:Celery本身不提供消息服务,但

  • Django配置celery(非djcelery)执行异步任务和定时任务

    所有演示均基于Django2.0 celery是一个基于python开发的简单.灵活且可靠的分布式任务队列框架,支持使用任务队列的方式在分布式的机器/进程/线程上执行任务调度.采用典型的生产者-消费者模型,主要由三部分组成: 消息队列broker:broker实际上就是一个MQ队列服务,可以使用redis.rabbitmq等作为broker 处理任务的消费者workers:broker通知worker队列中有任务,worker去队列中取出任务执行,每一个worker就是一个进程 存储结果的bac

  • Django Celery异步任务队列的实现

    背景 在开发中,我们常常会遇到一些耗时任务,举个例子: 上传并解析一个 1w 条数据的 Excel 文件,最后持久化至数据库. 在我的程序中,这个任务耗时大约 6s,对于用户来说,6s 的等待已经是个灾难了. 比较好的处理方式是: 接收这个任务的请求 将这个任务添加到队列中 立即返回「操作成功,正在后台处理」的字样 后台消费这个队列,执行这个任务 我们按照这个思路,借助 Celery 进行实现. 实现 本文所使用的环境如下: Python 3.6.7 RabbitMQ 3.8 Celery 4.

  • Django中使用celery完成异步任务的示例代码

    本文主要介绍如何在django中用celery完成异步任务,web项目中为了提高用户体验可以对一些耗时操作放到异步队列中去执行,例如激活邮件,后台计算操作等等 当前项目环境为: django==1.11.8 celery==3.1.25 redis==2.10.6 pip==9.0.1 python3==3.5.2 django-celery==3.1.17 一,创建Django项目及celery配置 1,创建Django项目 1>打开终端输入:django-admin startproject

  • 使用celery执行Django串行异步任务的方法步骤

    前言 Django项目有一个耗时较长的update过程,希望在接到请求运行update过程的时候,Django应用仍能正常处理其他的请求,并且update过程要求不能并行,也不能漏掉任何一个请求 使用celery的solo模式解决 安装redis https://github.com/microsoftarchive/redis/releases 下载.msi文件安装,会直接将redis注册为windows服务 安装celery与redis依赖 pip install celery pip in

  • django中使用Celery 布式任务队列过程详解

    本文记录django中如何使用celery完成异步任务. Celery 是一个简单.灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具. 它是一个专注于实时处理的任务队列,同时也支持任务调度. 官方网站 中文文档 示例一:用户发起request,并等待response返回.在本些views中,可能需要执行一段耗时的程序,那么用户就会等待很长时间,造成不好的用户体验 示例二:网站每小时需要同步一次天气预报信息,但是http是请求触发的,难道要一小时请求一次吗? 使用cele

  • python使用celery实现异步任务执行的例子

    使用celery在django项目中实现异步发送短信 在项目的目录下创建celery_tasks用于保存celery异步任务. 在celery_tasks目录下创建config.py文件,用于保存celery的配置信息 ```broker_url = "redis://127.0.0.1/14"``` 在celery_tasks目录下创建main.py文件,用于作为celery的启动文件 from celery import Celery # 为celery使用django配置文件进行

  • python基于celery实现异步任务周期任务定时任务

    这篇文章主要介绍了python基于celery实现异步任务周期任务定时任务,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 hello, 小伙伴们, 好久不更新了,这一次带来的是celery在python中的应用以及设置异步任务周期任务和定时任务的步骤,希望能给入坑的你带来些许帮助. 首先是对celery的介绍,Celery其实是一个专注于实时处理和调度任务的分布式任务队列,同时提供操作和维护分布式系统所需要的全部数据, 因此可以用它提供的接口快

  • 在RedHat系Linux上部署Python的Celery框架的教程

    Celery (芹菜)是基于Python开发的分布式任务队列.它支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度. 架构设计 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 1. 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis, MongoDB (experimental), Amazon

  • Python中celery的使用

    目录 Celery简介 celery的异步任务 1.安装celery 2.安装redis 3.使用ceelry Django中使用celery 1.创建celery文件 2.添加celery配置 3.在别的应用下使用celery执行异步任务 [使用celery异步发送钉钉群消息通知] 4.启动celery服务 Celery简介 Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度. Celery的架构由三部分组成,消息中间件(messa

  • python中celery的基本使用详情

    目录 1.基本介绍 2.使用场景 3.工作流程和组成部分 4.Celery执行异步任务 4.1 基础使用 1.基本介绍 Celery 是由Python 编写的简单,灵活,可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具.Celery 专注于实时任务处理,支持任务调度. 简单的说,它就是一个分布式队列的管理工具,用celery提供的接口快速实现并管理一个分布式的任务队列. 有一点我们需要搞清楚,Celery 本身并不是任务队列,它是一个分布式队列的管理工具,Celery

  • Django集成celery发送异步邮件实例

    安装依赖 pip install django-celery-beat pip install django-celery-email pip install celery pip install msgpack-python pip install msgpack 在settings文件中配置 添加app应用到installed_apps中 "djcelery_email", "django_celery_beat" 修改.env文件配置: #邮箱后端,使用cel

  • Python协程asyncio 异步编程笔记分享

    目录 1.事件循环 2.协程和异步编程 2.1 基本使用 2.2 await 2.3 Task对象 1.事件循环 可以理解成为一个死循环,去检查任务列表中的任务,如果可执行就去执行,如果检查不到就是不可执行的,那就忽略掉去执行其他可执行的任务,如果IO结束了(比如说去百度下载图片,下载完了就会变成可执行任务)再去执行下载完成之后的逻辑 #这里的任务是有状态的,比如这个任务已经完成或者正在执行或者正在IO等待 任务列表 = [ 任务1, 任务2, 任务3,... ] while True: 可执行

  • Python协程asyncio异步编程笔记分享

    目录 1.事件循环 2.协程和异步编程 2.1基本使用 2.2await 2.3Task对象 1.事件循环 可以理解成为一个死循环,去检查任务列表中的任务,如果可执行就去执行,如果检查不到就是不可执行的,那就忽略掉去执行其他可执行的任务,如果IO结束了(比如说去百度下载图片,下载完了就会变成可执行任务)再去执行下载完成之后的逻辑 #这里的任务是有状态的,比如这个任务已经完成或者正在执行或者正在IO等待 任务列表 = [ 任务1, 任务2, 任务3,... ] while True: 可执行的任务

  • python 中的 asyncio 异步协程

    目录 一.定义协程 二.运行协程 三.协程回调 四.运行多个协程 五.run_forever 六.多协程中关闭run_forever 一.定义协程 asyncio 执行的任务,称为协程,但是Asyncio 并不能带来真正的并行 Python 的多线程因为 GIL(全局解释器锁)的存在,也不能带来真正的并行 import asyncio # 通过 async 定义一个协程 async def task(): print('这是一个协程') # 判断是否是一个协程,返回True print(asyn

随机推荐