python pandas中对Series数据进行轴向连接的实例

有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现。操作的对象通常是Series。

Ipython中的交互代码如下:

In [17]: from pandas import Series,DataFrame
In [18]: series1 = Series(range(2),index = ['a','b'])
In [19]: series2 = Series(range(3),index = ['c','d','e'])
In [20]: series3 = Series(range(2),index = ['f','g'])
In [21]: import pandas as pd

进行三个Series的连接:

In [22]: pd.concat([series1,series2,series3])
Out[22]:
a 0
b 1
c 0
d 1
e 2
f 0
g 1
dtype: int64

默认情况下,pandas执行的是按照axis=0进行连接。如果进行axis=1的连接,结果如下:

In [24]: S1=pd.concat([series1,series2,series3],axis=1)
In [25]: S1
Out[25]:
 0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 0.0 NaN
d NaN 1.0 NaN
e NaN 2.0 NaN
f NaN NaN 0.0
g NaN NaN 1.0
In [26]: type(S1)
Out[26]: pandas.core.frame.DataFrame

结果是一个DataFrame,回头再看一下前面的Series的连接后的最终类型:

In [27]: type(pd.concat([series1,series2,series3]))
Out[27]: pandas.core.series.Series

两种方式的结果并不相同,一个结果是Series,另一个则是DataFrame。

In [29]: series3 = Series(range(2),index = ['f','e'])
In [30]: pd.concat([series1,series2,series3])
Out[30]:
a 0
b 1
c 0
d 1
e 2
f 0
e 1
dtype: int64

从上面的一点测试中可以看出,concat的操作仅仅是单纯的连接,并没有涉及到数据的整合。如果想要进行整合,还是使用merge的方法。

以上这篇python pandas中对Series数据进行轴向连接的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python Series从0开始索引的方法

    如下所示: b.reset_index(drop=True) reset_index代表重新设置索引,drop=True为删除原索引. 以上这篇Python Series从0开始索引的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python 集合 并集、交集 Series list set 转换的实例

    set转成list方法如下: list转成set方法如下: s = set('12342212')                                                      l = ['12342212']  print s    # set(['1', '3', '2', '4'])                                    s = set(l[0])  l = list(s)                             

  • Python数据分析中Groupby用法之通过字典或Series进行分组的实例

    在数据分析中有时候需要自己定义分组规则 这里简单介绍一下用一个字典实现分组 people=DataFrame( np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'] ) mapping={'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'} by_column=people.grou

  • Python3使用pandas模块读写excel操作示例

    本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

  • python3 pandas 读取MySQL数据和插入的实例

    python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')

  • 在python中pandas的series合并方法

    如下所示: In [3]: import pandas as pd In [4]: a = pd.Series([1,2,3]) In [5]: b = pd.Series([2,3,4]) In [6]: c = pd.DataFrame([a,b]) In [7]: c Out[7]: 0 1 2 0 1 2 3 1 2 3 4 不过pandas直接用列表生成dataframe只能按行生成,如果是字典可以按列生成,比如: In [8]: c = pd.DataFrame({'a':a,'b'

  • python3使用pandas获取股票数据的方法

    如下所示: from pandas_datareader import data, wb from datetime import datetime import matplotlib.pyplot as plt end = datetime.now() start = datetime(end.year - 1, end.month, end.day) alibaba = data.DataReader('BABA', 'yahoo', start, end) alibaba['Adj Clo

  • Python3.5 Pandas模块之Series用法实例分析

    本文实例讲述了Python3.5 Pandas模块之Series用法.分享给大家供大家参考,具体如下: 1.Pandas模块引入与基本数据结构 2.Series的创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #模块引入 import numpy as np import pandas as pd from pandas import Series,DataFrame #1.Series通过numpy一

  • 浅谈python的dataframe与series的创建方法

    如下所示: # -*- coding: utf-8 -*- import numpy as np import pandas as pd def main(): s = pd.Series([i*2 for i in range(1,11)]) print type(s) print (s) dates = pd.date_range("20170301",periods=8) df = pd.DataFrame(np.random.randn(8,5),index=dates,col

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

随机推荐