Python实现的堆排序算法示例

本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下:

堆排序的思想: 堆是一种数据结构,可以将堆看作一棵完全二叉树,这棵二叉树满足,任何一个非叶节点的值都不大于(或不小于)其左右孩子节点的值。 将一个无序序列调整为一个堆,就可以找出这个序列的最大值(或最小值),然后将找出的这个值交换到序列的最后一个,这样有序序列就元素就增加一个,无序序列元素就减少一个,对新的无序序列重复这样的操作,就实现了排序。

堆排序的执行过程:

1.从无序序列所确定的完全二叉树的第一个非叶子节点开始,从右至左,从下至上,对每个节点进行调整,最终将得到一个大顶堆。

对节点的调整方法:将当前节点(假设为a)的值与其孩子节点进行比较,如果存在大于a的值的孩子节点,则从中选出最大的一个与a交换。当a来到下一层的时候重复上述过程,直到a的孩子节点的值都小于a为止

2.将当前无序序列中的第一个元素(反映在数中是根节点b),与无序序列中的最后一个元素交换(假设为c),b进入有序序列,到达最终位置。无序序列元素减少1个,有序序列元素增加1个,此时只有节点c可能不满足堆的定义,对其进行调整。

3.重复2 的过程,直到无序序列的元素剩下一个时排序结束。

# -*- coding:utf-8 -*-
# 堆排序适用于记录数很多的情况
from collections import deque
# 这里需要说明元素的存储必须要从1开始
# 涉及到左右节点的定位,和堆排序开始调整节点的定位
# 在下标0处插入0,它不参与排序
L = deque([49,38,65,97,76,13,27,49])
L.appendleft(0)
#L = [0,49,38,65,97,76,13,27,49]
def element_exchange(numbers,low,high):
  temp = numbers[low]
  # j 是low的左孩子节点(cheer!)
  i = low
  j = 2*i
  while j<=high:
    # 如果右节点较大,则把j指向右节点
    if j<high and numbers[j]<numbers[j+1]:
      j = j+1
    if temp<numbers[j]:
      # 将numbers[j]调整到双亲节点的位置上
      numbers[i] = numbers[j]
      i = j
      j = 2*i
    else:
      break
  # 被调整节点放入最终位置
  numbers[i] = temp
def top_heap_sort(numbers):
  length = len(numbers)-1
  # 指定第一个进行调整的元素的下标
  # 它即该无序序列完全二叉树的第一个非叶子节点
  # 它之前的元素均要进行调整
  # cheer up!
  first_exchange_element = length/2
  #建立初始堆
  print first_exchange_element
  for x in range(first_exchange_element):
    element_exchange(numbers,first_exchange_element-x,length)
  # 将根节点放到最终位置,剩余无序序列继续堆排序
  # length-1 次循环完成堆排序
  for y in range(length-1):
    temp = numbers[1]
    numbers[1] = numbers[length-y]
    numbers[length-y] = temp
    element_exchange(numbers,1,length-y-1)
if __name__=='__main__':
  top_heap_sort(L)
  for x in range(1,len(L)):
    print L[x],

运行结果:

PS:这里再为大家推荐一款关于排序的演示工具供大家参考:

在线动画演示插入/选择/冒泡/归并/希尔/快速排序算法过程工具:
http://tools.jb51.net/aideddesign/paixu_ys

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python列表(list)操作技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • python 实现堆排序算法代码
  • Python实现基于二叉树存储结构的堆排序算法示例
  • Python排序搜索基本算法之堆排序实例详解
  • Python实现的堆排序算法原理与用法实例分析
  • python下实现二叉堆以及堆排序的示例
  • Python实现堆排序的方法详解
  • python冒泡排序算法的实现代码
  • python 实现插入排序算法
  • python选择排序算法的实现代码
  • python 实现归并排序算法
  • Python实现的数据结构与算法之快速排序详解
(0)

相关推荐

  • Python实现堆排序的方法详解

    本文实例讲述了Python实现堆排序的方法.分享给大家供大家参考,具体如下: 堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间. 堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树.如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆. 我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,

  • Python实现基于二叉树存储结构的堆排序算法示例

    本文实例讲述了Python实现基于二叉树存储结构的堆排序算法.分享给大家供大家参考,具体如下: 既然用Python实现了二叉树,当然要写点东西练练手. 网络上堆排序的教程很多,但是却几乎都是以数组存储的数,直接以下标访问元素,当然这样是完全没有问题的,实现简单,访问速度快,也容易理解. 但是以练手的角度来看,我还是写了一个二叉树存储结构的堆排序 其中最难的问题就是交换二叉树中两个节点. 因为一个节点最多与三个节点相连,那么两个节点互换,就需要考虑到5个节点之间的关系,也需要判断是左右孩子,这将是

  • python 实现堆排序算法代码

    复制代码 代码如下: #!/usr/bin/python import sys def left_child(node): return node * 2 + 1 def right_child(node): return node * 2 + 2 def parent(node): if (node % 2): return (i - 1) / 2 else: return (i - 2) / 2 def max_heapify(array, i, heap_size): l = left_c

  • python 实现插入排序算法

    复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,

  • Python排序搜索基本算法之堆排序实例详解

    本文实例讲述了Python排序搜索基本算法之堆排序.分享给大家供大家参考,具体如下: 堆是一种完全二叉树,堆排序是一种树形选择排序,利用了大顶堆堆顶元素最大的特点,不断取出最大元素,并调整使剩下的元素还是大顶堆,依次取出最大元素就是排好序的列表.举例如下,把序列[26,5,77,1,61,11,59,15,48,19]排序,如下: 基于堆的优先队列算法代码如下: def fixUp(a): #在堆尾加入新元素,fixUp恢复堆的条件 k=len(a)-1 while k>1 and a[k//2

  • Python实现的堆排序算法原理与用法实例分析

    本文实例讲述了Python实现的堆排序算法.分享给大家供大家参考,具体如下: 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法.堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点. 具体代码如下: #-*- coding: UTF-8 -*- import numpy as np def MakeHeap(a): for i in xrange(a.size / 2 - 1, -1, -1):#对非叶子节点的子节点进行调节,构建

  • python 实现归并排序算法

    理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • python下实现二叉堆以及堆排序的示例

    堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大.小头堆则相反. 我大概讲解下建一个树形堆的算法过程: 找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点

  • Python实现的数据结构与算法之快速排序详解

    本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中

  • python选择排序算法的实现代码

    1.算法:对于一组关键字{K1,K2,-,Kn}, 首先从K1,K2,-,Kn中选择最小值,假如它是 Kz,则将Kz与 K1对换:然后从K2,K3,- ,Kn中选择最小值 Kz,再将Kz与K2对换.如此进行选择和调换n-2趟,第(n-1)趟,从Kn-1.Kn中选择最小值 Kz将Kz与Kn-1对换,最后剩下的就是该序列中的最大值,一个由小到大的有序序列就这样形成. 2.python 选择排序代码: 复制代码 代码如下: def selection_sort(list2):    for i in

随机推荐