Python 绘图库 Matplotlib 入门教程

运行环境

由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何安装Matplotlib请参见这里:Matplotlib Installing

笔者推荐大家通过pip的方式进行安装,具体方法如下:

sudo pip3 install matplotlib

本文中的源码和测试数据可以在这里获取:matplotlib_tutorial

本文的代码示例会用到另外一个Python库:NumPy。建议读者先对NumPy有一定的熟悉,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程。

本文的代码在如下环境中测试:

  • Apple OS X 10.13
  • Python 3.6.3 matplotlib 2.1.1
  • numpy 1.13.3

介绍

Matplotlib适用于各种环境,包括:

  • Python脚本
  • IPython shell Jupyter notebook
  • Web应用服务器
  • 用户图形界面工具包

使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。并且,可以非常轻松的实现定制。

入门代码示例

下面我们先看一个最简单的代码示例,让我们感受一下Matplotlib是什么样的:

# test.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.plot(data)
plt.show()

这段代码的主体逻辑只有三行,但是它却绘制出了一个非常直观的线性图,如下所示:

对照着这个线形图,我们来讲解一下三行代码的逻辑:

  • 通过np.arange(100, 201)生成一个[100, 200]之间的整数数组,它的值是:[100, 101, 102, … , 200]
  • 通过matplotlib.pyplot将其绘制出来。很显然,绘制出来的值对应了图中的纵坐标(y轴)。而matplotlib本身为我们设置了图形的横坐标(x轴):[0, 100],因为我们刚好有100个数值
  • 通过plt.show()将这个图形显示出来

这段代码非常的简单,运行起来也是一样。如果你已经有了本文的运行环境,将上面的代码保存到一个文本文件中(或者通过Github获取本文的源码),然后通过下面的命令就可以在你自己的电脑上看到上面的图形了:

python3 test.py

注1:后面的教程中,我们会逐步讲解如何定制图中的每一个细节。例如:坐标轴,图形,着色,线条样式,等等。

注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。

一次绘制多个图形

有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。

可以通过下面的方法创建多个图形:

多个figure

可以简单的理解为一个figure就是一个图形窗口。matplotlib.pyplot会有一个默认的figure,我们也可以通过plt.figure()创建更多个。如下面的代码所示:

# figure.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.plot(data)
data2 = np.arange(200, 301)
plt.figure()
plt.plot(data2)
plt.show()

这段代码绘制了两个窗口的图形,它们各自是一个不同区间的线形图,如下所示:

注:初始状态这两个窗口是完全重合的。

多个subplot

有些情况下,我们是希望在同一个窗口显示多个图形。此时就这可以用多个subplot。下面是一段代码示例:

# subplot.py
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.subplot(2, 1, 1)
plt.plot(data)
data2 = np.arange(200, 301)
plt.subplot(2, 1, 2)
plt.plot(data2)
plt.show()

这段代码中,除了subplot函数之外都是我们熟悉的内容。subplot函数的前两个参数指定了subplot数量,即:它们是以矩阵的形式来分割当前图形,两个整数分别指定了矩阵的行数和列数。而第三个参数是指矩阵中的索引。

因此,下面这行代码指的是:2行1列subplot中的第1个subplot。

plt.subplot(2, 1, 1)

下面这行代码指的是:2行1列subplot中的第2个subplot。

plt.subplot(2, 1, 2)

所以这段代码的结果是这个样子:

subplot函数的参数不仅仅支持上面这种形式,还可以将三个整数(10之内的)合并一个整数。例如:2, 1, 1可以写成2112, 1, 2可以写成212

因此,下面这段代码的结果是一样的:

import matplotlib.pyplot as plt
import numpy as np
data = np.arange(100, 201)
plt.subplot(211)
plt.plot(data)
data2 = np.arange(200, 301)
plt.subplot(212)
plt.plot(data2)
plt.show()

subplot函数的详细说明参见这里:matplotlib.pyplot.subplot

常用图形示例

Matplotlib可以生成非常多的图形式样,多到令人惊叹的地步。大家可以在这里:Matplotlib Gallery 感受一下。

本文作为第一次的入门教程,我们先来看看最常用的一些图形的绘制。

线性图

前面的例子中,线性图的横轴的点都是自动生成的,而我们很可能希望主动设置它。另外,线条我们可能也希望对其进行定制。看一下下面这个例子:

# plot.py
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [3, 6, 9], '-r')
plt.plot([1, 2, 3], [2, 4, 9], ':g')
plt.show()

这段代码可以让我们得到这样的图形:

这段代码说明如下:

plot函数的第一个数组是横轴的值,第二个数组是纵轴的值,所以它们一个是直线,一个是折线; 最后一个参数是由两个字符构成的,分别是线条的样式和颜色。前者是红色的直线,后者是绿色的点线。关于样式和颜色的说明请参见plot函数的API Doc:matplotlib.pyplot.plot

散点图

scatter函数用来绘制散点图。同样,这个函数也需要两组配对的数据指定x和y轴的坐标。下面是一段代码示例:

# scatter.py
import matplotlib.pyplot as plt
import numpy as np
N = 20
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='r', s=100, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='g', s=200, alpha=0.5)
plt.scatter(np.random.rand(N) * 100,
   np.random.rand(N) * 100,
   c='b', s=300, alpha=0.5)
plt.show()

这段代码说明如下:

这幅图包含了三组数据,每组数据都包含了20个随机坐标的位置 参数c表示点的颜色,s是点的大小,alpha是透明度

这段代码绘制的图形如下所示:

scatter函数的详细说明参见这里:matplotlib.pyplot.scatter

饼状图

pie函数用来绘制饼状图。饼状图通常用来表达集合中各个部分的百分比。

# pie.py
import matplotlib.pyplot as plt
import numpy as np
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
data = np.random.rand(7) * 100
plt.pie(data, labels=labels, autopct='%1.1f%%')
plt.axis('equal')
plt.legend()
plt.show()

这段代码说明如下:

data是一组包含7个数据的随机数值 图中的标签通过labels来指定 autopct指定了数值的精度格式 plt.axis('equal')设置了坐标轴大小一致 plt.legend()指明要绘制图例(见下图的右上角)

这段代码输出的图形如下所示:

pie函数的详细说明参见这里:matplotlib.pyplot.pie

条形图

bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。

下面是一个代码示例:

# bar.py
import matplotlib.pyplot as plt
import numpy as np
N = 7
x = np.arange(N)
data = np.random.randint(low=0, high=100, size=N)
colors = np.random.rand(N * 3).reshape(N, -1)
labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
plt.title("Weekday Data")
plt.bar(x, data, alpha=0.8, color=colors, tick_label=labels)
plt.show()

这段代码说明如下:

这幅图展示了一组包含7个随机数值的结果,每个数值是[0, 100]的随机数 它们的颜色也是通过随机数生成的。np.random.rand(N * 3).reshape(N, -1)表示先生成21(N x 3)个随机数,然后将它们组装成7行,那么每行就是三个数,这对应了颜色的三个组成部分。如果不理解这行代码,请先学习一下Python 机器学习库 NumPy 教程 title指定了图形的标题,labels指定了标签,alpha是透明度

这段代码输出的图形如下所示:

bar函数的详细说明参见这里:matplotlib.pyplot.bar

直方图

hist函数用来绘制直方图。直方图看起来是条形图有些类似。但它们的含义是不一样的,直方图描述了数据中某个范围内数据出现的频度。这么说有些抽象,我们通过一个代码示例来描述就好理解了:

# hist.py
import matplotlib.pyplot as plt
import numpy as np
data = [np.random.randint(0, n, n) for n in [3000, 4000, 5000]]
labels = ['3K', '4K', '5K']
bins = [0, 100, 500, 1000, 2000, 3000, 4000, 5000]
plt.hist(data, bins=bins, label=labels)
plt.legend()
plt.show()

上面这段代码中,[np.random.randint(0, n, n) for n in [3000, 4000, 5000]]生成了包含了三个数组的数组,这其中:

第一个数组包含了3000个随机数,这些随机数的范围是 [0, 3000) 第二个数组包含了4000个随机数,这些随机数的范围是 [0, 4000) 第三个数组包含了5000个随机数,这些随机数的范围是 [0, 5000)

bins数组用来指定我们显示的直方图的边界,即:[0, 100) 会有一个数据点,[100, 500)会有一个数据点,以此类推。所以最终结果一共会显示7个数据点。同样的,我们指定了标签和图例。

这段代码的输出如下图所示:

在这幅图中,我们看到,三组数据在3000以下都有数据,并且频度是差不多的。但蓝色条只有3000以下的数据,橙色条只有4000以下的数据。这与我们的随机数组数据刚好吻合。

hist函数的详细说明参见这里:matplotlib.pyplot.hist

结束语

通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

需要说明的是,由于是入门教程,因此本文中我们只给出了这些函数和图形最基本的使用方法。但实际上,它们的功能远不止这么简单。因此本文中我们贴出了这些函数的API地址以便读者进一步的研究。

您可能感兴趣的文章:

  • Python+matplotlib绘制不同大小和颜色散点图实例
  • python学习之matplotlib绘制散点图实例
  • python matplotlib坐标轴设置的方法
  • python Matplotlib画图之调整字体大小的示例
  • python中Matplotlib实现绘制3D图的示例代码
(0)

相关推荐

  • python matplotlib坐标轴设置的方法

    在使用matplotlib模块时画坐标图时,往往需要对坐标轴设置很多参数,这些参数包括横纵坐标轴范围.坐标轴刻度大小.坐标轴名称等 在matplotlib中包含了很多函数,用来对这些参数进行设置. 我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成x轴上的数据:从-3到3,总共有50个点 x = np.lin

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • python中Matplotlib实现绘制3D图的示例代码

    Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现.但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块. mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkit

  • python Matplotlib画图之调整字体大小的示例

    一张字体调整好的示例图: 字体大小就是 fontsize 参数 import matplotlib.pyplot as plt # 代码中的"..."代表省略的其他参数 ax = plt.subplot(111) # 设置刻度字体大小 plt.xticks(fontsize=20) plt.yticks(fontsize=20) # 设置坐标标签字体大小 ax.xlabel(..., fontsize=20) ax.ylabel(..., fontsize=20) # 设置图例字体大小

  • Python 绘图库 Matplotlib 入门教程

    运行环境 由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何安装Matplotlib请参见这里:Matplotlib Installing. 笔者推荐大家通过pip的方式进行安装,具体方法如下: sudo pip3 install matplotlib 本文中的源码和测试数据可以在这里获取:matplotlib_tutorial 本文的代码示例会用到另外一个Python库:NumPy.建议读者先对NumPy

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • Python绘图库Matplotlib的基本用法

    一.前言 Matplotlib是Python的绘图库,不仅具备强大的绘图功能,还能够在很多平台上使用,和Jupyter Notebook有极强的兼容性. 二.线型图 import matplotlib.pyplot as plt import numpy as np # 指定生成随机数的种子,这样每次运行得到的随机数都是相同的 np.random.seed(42) # 生成30个满足平均值为0.方差为1的正态分布的样本 x = np.random.randn(30) # plot本意有"绘制(图

  • 用Python的绘图库(matplotlib)绘制小波能量谱

    时间小波能量谱 反映信号的小波能量沿时间轴的分布. 由于小波变换具有等距效应,所以有: 式中 表示信号强度,对于式①在平移因子b方向上进行加权积分 式中 代表时间-小能量谱 尺度小波能量谱 反映信号的小波能量随尺度的变化情况. 同理,对式①在尺度方向上进行加权积分: 式中 连续小波变换 连续小波变换的结果是一个小波系数矩阵,随着尺度因子和位移因子变化.然后将系数平方后得到小波能量,把每个尺度因子对应的所有小波能量进行叠加,那么就可以得到随尺度因子变换的小波能量谱曲线.把尺度换算成频率后,这条曲线

  • Python之Sklearn使用入门教程

    1.Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法.Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • python Tkinter的简单入门教程

    我们将编写一个英尺和米的转换程序,通过这个程序,我们将会了解一个真正的实用程序该怎么设计和编写,我们也将会了解到 Tk 程序内部的基本样子.不必完全掌握里面的所有知识,更多细节将会在之后的章节中讲到.本节仅要求了解即可,使读者明白如何设计和编写一个 Tk GUI 程序. 设计 我们将要写一个简单的将英尺(feet)转换为米(me­ters)的 GUI 工具,按照我们的经验,它应该长成下面那个样子: 这个程序会有一个输入框用来输入英尺数,还将会有一个显示框用来显示被转换之后的数字,几个用于显示提示

  • python扩展库numpy入门教程

    目录 一.numpy是什么? 二.numpy数组 2.1 数组使用 2.2 创建数组 1. 使用empty创建空数组 2. 使用arange函数创建 3. 使用zeros函数生成数组 4. ones函数生成数组 5. diag函数生成对角矩阵 6. N维数组 2.3 访问数组元素 三.了解矩阵 3.1 广播 一.numpy是什么? 扩展库numpy是Python支持科学计算的重要扩展库,是数据分析和科学计算领域如scipy.pandas.sklearn 等众多扩展库中的必备扩展库之一,提供了强大

  • Python绘图库之pyqtgraph的用法详解

    plot 设置plot的pen属性的几种方法,通过画笔可以设置绘制图像的颜色.线宽等参数: pen=(255,0,0) pen=pg.mkPen(color=‘b’, width=5) pen=pg.mkPen({‘color’:‘FF0’, ‘width’: 2}) import sys import os from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * import pyqt

随机推荐