vue 虚拟dom的patch源码分析

本文介绍了vue 虚拟dom的patch源码分析,分享给大家,具体如下:

源码目录:src/core/vdom/patch.js

 function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {
  let oldStartIdx = 0
  let newStartIdx = 0
  let oldEndIdx = oldCh.length - 1
  let oldStartVnode = oldCh[0]
  let oldEndVnode = oldCh[oldEndIdx]
  let newEndIdx = newCh.length - 1
  let newStartVnode = newCh[0]
  let newEndVnode = newCh[newEndIdx]
  let oldKeyToIdx, idxInOld, vnodeToMove, refElm

    const canMove = !removeOnly

  while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { // 开始索引大于结束索引,进不了
   if (isUndef(oldStartVnode)) {
    oldStartVnode = oldCh[++oldStartIdx] // Vnode已经被移走了。
   } else if (isUndef(oldEndVnode)) {
    oldEndVnode = oldCh[--oldEndIdx]
   } else if (sameVnode(oldStartVnode, newStartVnode)) {
    patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue)
    oldStartVnode = oldCh[++oldStartIdx] // 索引加1。是去对比下一个节点。比如之前start=a[0],那现在start=a[1],改变start的值后再去对比start这个vnode
    newStartVnode = newCh[++newStartIdx]

   } else if (sameVnode(oldEndVnode, newEndVnode)) {
    patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue)
    oldEndVnode = oldCh[--oldEndIdx]
    newEndVnode = newCh[--newEndIdx]
   } else if (sameVnode(oldStartVnode, newEndVnode)) {
    patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue)
    canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))// 把节点b移到树的最右边
    oldStartVnode = oldCh[++oldStartIdx]
    newEndVnode = newCh[--newEndIdx]

   } else if (sameVnode(oldEndVnode, newStartVnode)) {  old.end.d=new.start.d
    patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue)
    canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)// Vnode moved left,把d移到c的左边。=old.start->old.end
    oldEndVnode = oldCh[--oldEndIdx]
    newStartVnode = newCh[++newStartIdx] 

   } else {
    if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
    idxInOld = isDef(newStartVnode.key)
     ? oldKeyToIdx[newStartVnode.key]
     : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx)
    if (isUndef(idxInOld)) {
     createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm) // 创建新节点,后面执行了nodeOps.insertBefore(parent, elm, ref)
    } else {
     vnodeToMove = oldCh[idxInOld]
     /* istanbul ignore if */
     if (process.env.NODE_ENV !== 'production' && !vnodeToMove) {
      warn(
       'It seems there are duplicate keys that is causing an update error. ' +
       'Make sure each v-for item has a unique key.'
      )
     }
     if (sameVnode(vnodeToMove, newStartVnode)) {
      patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue)
      oldCh[idxInOld] = undefined
      canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm)
     } else {
      // same key but different element. treat as new element
      createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
     }
    }
    newStartVnode = newCh[++newStartIdx] 

   }
  }
  if (oldStartIdx > oldEndIdx) {
   refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm
   addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue)
  } else if (newStartIdx > newEndIdx) {
   removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx) // 删除旧的c,removeNode(ch.elm)

  }
 }
function sameVnode (a, b) {
 return (
  a.key === b.key && (
   (
    a.tag === b.tag &&
    a.isComment === b.isComment &&
    isDef(a.data) === isDef(b.data) &&
    sameInputType(a, b)
   ) || (
    isTrue(a.isAsyncPlaceholder) &&
    a.asyncFactory === b.asyncFactory &&
    isUndef(b.asyncFactory.error)
   )
  )
 )
}

/**
   * 比较新旧vnode节点,根据不同的状态对dom做合理的更新操作(添加,移动,删除)整个过程还会依次调用prepatch,update,postpatch等钩子函数,在编译阶段生成的一些静态子树,在这个过程
   * @param oldVnode 中由于不会改变而直接跳过比对,动态子树在比较过程中比较核心的部分就是当新旧vnode同时存在children,通过updateChildren方法对子节点做更新,
   * @param vnode
   * @param insertedVnodeQueue
   * @param removeOnly
   */
 function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) {
  if (oldVnode === vnode) {
   return
  }

  const elm = vnode.elm = oldVnode.elm

  if (isTrue(oldVnode.isAsyncPlaceholder)) {
   if (isDef(vnode.asyncFactory.resolved)) {
    hydrate(oldVnode.elm, vnode, insertedVnodeQueue)
   } else {
    vnode.isAsyncPlaceholder = true
   }
   return
  }

   // 用于静态树的重用元素。
    // 注意,如果vnode是克隆的,我们只做这个。
    // 如果新节点不是克隆的,则表示呈现函数。
    // 由热重加载api重新设置,我们需要进行适当的重新渲染。
  if (isTrue(vnode.isStatic) &&
   isTrue(oldVnode.isStatic) &&
   vnode.key === oldVnode.key &&
   (isTrue(vnode.isCloned) || isTrue(vnode.isOnce))
  ) {
   vnode.componentInstance = oldVnode.componentInstance
   return
  }

  let i
  const data = vnode.data
  if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
   i(oldVnode, vnode)
  }

  const oldCh = oldVnode.children
  const ch = vnode.children
  if (isDef(data) && isPatchable(vnode)) {
   for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
   if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
  }
  if (isUndef(vnode.text)) {
   if (isDef(oldCh) && isDef(ch)) {
    if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
   } else if (isDef(ch)) {
    if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
    addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
   } else if (isDef(oldCh)) {
    removeVnodes(elm, oldCh, 0, oldCh.length - 1)
   } else if (isDef(oldVnode.text)) {
    nodeOps.setTextContent(elm, '')
   }
  } else if (oldVnode.text !== vnode.text) {
   nodeOps.setTextContent(elm, vnode.text)
  }
  if (isDef(data)) {
   if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
  }
 }

function insertBefore (parentNode, newNode, referenceNode) {
 parentNode.insertBefore(newNode, referenceNode);
}

/**
   *
   * @param vnode根据vnode的数据结构创建真实的dom节点,如果vnode有children则会遍历这些子节点,递归调用createElm方法,
   * @param insertedVnodeQueue记录子节点创建顺序的队列,每创建一个dom元素就会往队列中插入当前的vnode,当整个vnode对象全部转换成为真实的dom 树时,会依次调用这个队列中vnode hook的insert方法
   * @param parentElm
   * @param refElm
   * @param nested
   */

   let inPre = 0
 function createElm (vnode, insertedVnodeQueue, parentElm, refElm, nested) {
  vnode.isRootInsert = !nested // 过渡进入检查
  if (createComponent(vnode, insertedVnodeQueue, parentElm, refElm)) {
   return
  }

  const data = vnode.data
  const children = vnode.children
  const tag = vnode.tag
  if (isDef(tag)) {
   if (process.env.NODE_ENV !== 'production') {
    if (data && data.pre) {
     inPre++
    }
    if (
     !inPre &&
     !vnode.ns &&
     !(
      config.ignoredElements.length &&
      config.ignoredElements.some(ignore => {
       return isRegExp(ignore)
        ? ignore.test(tag)
        : ignore === tag
      })
     ) &&
     config.isUnknownElement(tag)
    ) {
     warn(
      'Unknown custom element: <' + tag + '> - did you ' +
      'register the component correctly? For recursive components, ' +
      'make sure to provide the "name" option.',
      vnode.context
     )
    }
   }
   vnode.elm = vnode.ns
    ? nodeOps.createElementNS(vnode.ns, tag)
    : nodeOps.createElement(tag, vnode)
   setScope(vnode)

   /* istanbul ignore if */
   if (__WEEX__) {
    // in Weex, the default insertion order is parent-first.
    // List items can be optimized to use children-first insertion
    // with append="tree".
    const appendAsTree = isDef(data) && isTrue(data.appendAsTree)
    if (!appendAsTree) {
     if (isDef(data)) {
      invokeCreateHooks(vnode, insertedVnodeQueue)
     }
     insert(parentElm, vnode.elm, refElm)
    }
    createChildren(vnode, children, insertedVnodeQueue)
    if (appendAsTree) {
     if (isDef(data)) {
      invokeCreateHooks(vnode, insertedVnodeQueue)
     }
     insert(parentElm, vnode.elm, refElm)
    }
   } else {
    createChildren(vnode, children, insertedVnodeQueue)
    if (isDef(data)) {
     invokeCreateHooks(vnode, insertedVnodeQueue)
    }
    insert(parentElm, vnode.elm, refElm)
   }

   if (process.env.NODE_ENV !== 'production' && data && data.pre) {
    inPre--
   }
  } else if (isTrue(vnode.isComment)) {
   vnode.elm = nodeOps.createComment(vnode.text)
   insert(parentElm, vnode.elm, refElm)
  } else {
   vnode.elm = nodeOps.createTextNode(vnode.text)
   insert(parentElm, vnode.elm, refElm)
  }
 }
function insert (parent, elm, ref) {
  if (isDef(parent)) {
   if (isDef(ref)) {
    if (ref.parentNode === parent) {
     nodeOps.insertBefore(parent, elm, ref)
    }
   } else {
    nodeOps.appendChild(parent, elm)
   }
  }
 }

function removeVnodes (parentElm, vnodes, startIdx, endIdx) {
  for (; startIdx <= endIdx; ++startIdx) {
   const ch = vnodes[startIdx]
   if (isDef(ch)) {
    if (isDef(ch.tag)) {
     removeAndInvokeRemoveHook(ch)
     invokeDestroyHook(ch)
    } else { // Text node
     removeNode(ch.elm)
    }
   }
  }
 }

updateChildren方法主要通过while循环去对比2棵树的子节点来更新dom,通过对比新的来改变旧的,以达到新旧统一的目的。

通过一个例子来模拟一下:

假设有新旧2棵树,树中的子节点分别为a,b,c,d等表示,不同的代号代表不同的vnode,如:

在设置好状态后,我们开始第一遍比较,此时oldStartVnode=a,newStartVnode=a;命中了sameVnode(oldStartVnode,newStartVnode)逻辑,则直接调用patchVnode(oldStartVnode,newStartVnode,insertedVnodeQueue)方法更新节点a,接着把oldStartIdxnewStartIdx索引分别+1,如图:

更新完节点a后,我们开始第2遍比较,此时oldStartVnode=b,newEndVnode=b;命中了sameVnode(oldStartVnode,newEndVnode)逻辑,则调用patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue)方法更新节点b,接着调用canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm)),把节点b移到树的最右边,最后把oldStartIdx索引+1,newEndIdx索引-1,如图:

更新完节点b后,我们开始第三遍比较,此时oldEndVnode=d,newStartVnode=d;命中了sameVnode(oldEndVnode, newStartVnode)逻辑,则调用patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue)方法更新节点d,接着调用canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm),把d移到c的左边。最后把oldEndIdx索引-1,newStartIdx索引+1,如图:

更新完d后,我们开始第4遍比较,此时newStartVnode=e,节点e在旧树里是没有的,因此应该被作为一个新的元素插入,调用createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm),后面执行了nodeOps.insertBefore(parent, elm, ref)方法把e插入到c之前,接着把newStartIdx索引+1,如图:

插入节点e后,我们可以看到newStartIdx已经大于newEndIdx了,while循环已经完毕。接着调用removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx) 删除旧的c,最终如图:

updateChildren通过以上几步操作完成了旧树子节点的更新,实际上只用了比较小的dom操作,在性能上有所提升,并且当子节点越复杂,这种提升效果越明显。vnode通过patch方法生成dom后,会调用mounted hook,至此,整个vue实例就创建完成了,当这个vue实例的watcher观察到数据变化时,会两次调用render方法生成新的vnode,接着调用patch方法对比新旧vnode来更新dom.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 深入理解Vue2.x的虚拟DOM diff原理
  • 探究Vue.js 2.0新增的虚拟DOM
(0)

相关推荐

  • 探究Vue.js 2.0新增的虚拟DOM

    你可能早就已经听说了 Vue.js 2.0.一个主要的令人兴奋的新特性就是更新页面的"虚拟DOM"的加入. 虚拟 DOM 可以做什么? React 和 Ember 都使用了虚拟DOM来提升页面的刷新速度.为了理解其如何工作,让我们先讨论一下几个概念: 更新DOM的花费时间非常长 当我们使用 JavaScript 来改变页面的时候,浏览器不得不做一些工作来找到需要的DOM节点,并且做出类似这样的改变: document.getElementById('myId').appendChild

  • 深入理解Vue2.x的虚拟DOM diff原理

    前言 经常看到讲解Vue2的虚拟Dom diff原理的,但很多都是在原代码的基础上添加些注释等等,这里从0行代码开始实现一个Vue2的虚拟DOM 实现VNode src/core/vdom/Vnode.js export class VNode{ constructor ( tag, //标签名 children,//孩子[VNode,VNode], text, //文本节点 elm //对应的真实dom对象 ){ this.tag = tag; this.children = children

  • vue 虚拟dom的patch源码分析

    本文介绍了vue 虚拟dom的patch源码分析,分享给大家,具体如下: 源码目录:src/core/vdom/patch.js function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { let oldStartIdx = 0 let newStartIdx = 0 let oldEndIdx = oldCh.length - 1 let oldStartVnode = oldCh[0]

  • Vue源码分析之虚拟DOM详解

    为什么需要虚拟dom? 虚拟DOM就是为了解决浏览器性能问题而被设计出来的.例如,若一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地一个JS对象中,最终将这个JS对象一次性attch到DOM树上,再进行后续操作,避免大量无谓的计算量.简单来说,可以把Virtual DOM 理解为一个简单的JS对象,并且最少包含标签名( tag).属性(attrs)和子元素对象( children)三个属性. ----- 元素节点: 元素节点更贴近于我们

  • Vue 中 template 有且只能一个 root的原因解析(源码分析)

    引言 今年, 疫情 并没有影响到各种面经的正常出现,可谓是络绎不绝(学不动...).然后,在前段时间也看到一个这样的关于 Vue 的问题, 为什么每个组件 template 中有且只能一个 root? 可能,大家在平常开发中,用的较多就是 template 写 html 的形式.当然,不排除用 JSX 和 render() 函数的.但是,究其本质,它们最终都会转化成 render() 函数.然后,再由 render() 函数转为 Vritual DOM (以下统称 VNode ).而 rende

  • Vue.js源码分析之自定义指令详解

    前言 除了核心功能默认内置的指令 (v-model 和 v-show),Vue 也允许注册自定义指令. 官网介绍的比较抽象,显得很高大上,我个人对自定义指令的理解是:当自定义指令作用在一些DOM元素或组件上时,该元素在初次渲染.插入到父节点.更新.解绑时可以执行一些特定的操作(钩子函数() 自定义指令有两种注册方式,一种是全局注册,使用Vue.directive(指令名,配置参数)注册,注册之后所有的Vue实例都可以使用,另一种是局部注册,在创建Vue实例时通过directives属性创建局部指

  • Vue编译器optimize源码分析

    目录 引言 optimize 源码之旅 markStatic$1源码 isStatic源码 复杂点的 回归到markStatic$1 markStaticRoots 源码 引言 接上文 parseHTML 函数源码解析 chars.end.comment钩子函数 上一章节我们讲到通过解析将template转成AST(抽象语法树),接下来继续对模型树优化,进行静态标注.那么问题来了,什么是静态标注?为什么要静态标注. 在源码的注释中我们找到了下面这段话: /** * Goal of the opt

  • Vue编译器AST抽象语法树源码分析

    目录 引言 baseCompile主要核心代码 如何写一个程序来识别 Token parse 函数解析模板字符串 引言 接上篇  Vue编译器源码分析compile 解析 baseCompile主要核心代码 // `createCompilerCreator` allows creating compilers that use alternative // parser/optimizer/codegen, e.g the SSR optimizing compiler. // Here we

  • jQuery-1.9.1源码分析系列(十一)DOM操作续之克隆节点

    什么情况下使用到克隆节点? 我们知道在对DOM操作过程中如果直接使用节点会出现节点随操作而变动的情况.比如对节点使用.after/.before/.append等方法后,节点被添加到新的地方,原来的位置上的节点被移除了.有的时候需要保留原来位置上的节点,仅仅是需要一个副本添加到对应位置,这个时候克隆就有了使用场景. jQuery.fn.clone克隆当前匹配元素集合的一个副本,并以jQuery对象的形式返回. 你还可以指定是否复制这些匹配元素(甚至它们的子元素)的附加数据( data()函数 )

  • Vue 源码分析之 Observer实现过程

    导语: 本文是对 Vue 官方文档深入响应式原理(https://cn.vuejs.org/v2/guide/reactivity.html)的理解,并通过源码还原实现过程. 响应式原理可分为两步,依赖收集的过程与触发-重新渲染的过程.依赖收集的过程,有三个很重要的类,分别是 Watcher.Dep.Observer.本文主要解读 Observer . 这篇文章讲解上篇文章没有覆盖到的 Observer 部分的内容,还是先看官网这张图: Observer 最主要的作用就是实现了上图中touch

  • Vue高级组件之函数式组件的使用场景与源码分析

    目录 介绍 使用场景 源码分析 总结 介绍 Vue提供了一种可以让组件变为无状态.无实例的函数化组件.从原理上说,一般子组件都会经过实例化的过程,而单纯的函数组件并没有这个过程,它可以简单理解为一个中间层,只处理数据,不创建实例,也是由于这个行为,它的渲染开销会低很多.实际的应用场景是,当我们需要在多个组件中选择一个来代为渲染,或者在将children,props,data等数据传递给子组件前进行数据处理时,我们都可以用函数式组件来完成,它本质上也是对组件的一个外部包装. 使用场景 定义两个组件

  • Vue编译器源码分析compileToFunctions作用详解

    目录 引言 Vue.prototype.$mount函数体 源码出处 options.delimiters & options.comments compileToFunctions函数逐行分析 createFunction 函数源码 引言 Vue编译器源码分析 接上篇文章我们来分析:compileToFunctions的作用. 经过前面的讲解,我们已经知道了 compileToFunctions 的真正来源你可能会问为什么要弄的这么复杂?为了搞清楚这个问题,我们还需要继续接触完整的代码. 下面

随机推荐