Python Pandas中根据列的值选取多行数据
Pandas中根据列的值选取多行数据
# 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.loc[df['column_name'] != some_value] # isin返回一系列的数值,如果要选择不符合这个条件的数值使用~ df.loc[~df['column_name'].isin(some_values)] import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(), 'B': 'one one two three two two one three'.split(), 'C': np.arange(8), 'D': np.arange(8) * 2}) print(df) A B C D 0 foo one 0 0 1 bar one 1 2 2 foo two 2 4 3 bar three 3 6 4 foo two 4 8 5 bar two 5 10 6 foo one 6 12 7 foo three 7 14 print(df.loc[df['A'] == 'foo']) A B C D 0 foo one 0 0 2 foo two 2 4 4 foo two 4 8 6 foo one 6 12 7 foo three 7 14 # 如果你想包括多个值,把它们放在一个list里面,然后使用isin print(df.loc[df['B'].isin(['one','three'])]) A B C D 0 foo one 0 0 1 bar one 1 2 3 bar three 3 6 6 foo one 6 12 7 foo three 7 14 df = df.set_index(['B']) print(df.loc['one']) A B C D one foo 0 0 one bar 1 2 one foo 6 12 A B C D one foo 0 0 one bar 1 2 two foo 2 4 two foo 4 8 two bar 5 10 one foo 6 12
总结
以上所述是小编给大家介绍的Python Pandas中根据列的值选取多行数据,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
相关推荐
-
用Python的pandas框架操作Excel文件中的数据教程
引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa
-
python3 pandas 读取MySQL数据和插入的实例
python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')
-
python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现
相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用
-
Python+pandas计算数据相关系数的实例
本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数.Kendall Tau相关系数和spearman秩相关). >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random
-
Python遍历pandas数据方法总结
前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa
-
在Python中利用Pandas库处理大数据的简单介绍
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境 CPU:3.5 GHz Intel Core i7 内存:32 GB HDDR 3 1600 MHz 硬
-
python pandas消除空值和空格以及 Nan数据替换方法
在人工采集数据时,经常有可能把空值和空格混在一起,一般也注意不到在本来为空的单元格里加入了空格.这就给做数据处理的人带来了麻烦,因为空值和空格都是代表的无数据,而pandas中Series的方法notnull()会把有空格的数据也纳入进来,这样就不能完整地得到我们想要的数据了,这里给出一个简单的方法处理该问题. 方法1: 既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组. 这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组
-
Python Pandas中根据列的值选取多行数据
Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的
-
Python Pandas中DataFrame.drop_duplicates()删除重复值详解
目录 语法 参数 结果展示 扩展:识别重复值 总结 语法 df.drop_duplicates(subset = None, keep = 'first', inplace = False, ignore_index = False) 参数 1.subset:指定的标签或标签序列,仅删除这些列重复值,默认情况为所有列 2.keep:确定要保留的重复值,有以下可选项: first:保留第一次出现的重复值,默认 last:保留最后一次出现的重复值 False:删除所有重复值 3.inplace:是否
-
pandas 根据列的值选取所有行的示例
如下所示: # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.l
-
python pandas中DataFrame类型数据操作函数的方法
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几
-
python pandas中索引函数loc和iloc的区别分析
目录 前言 1.直接使用行或者列标签 2.loc函数 3.iloc函数 总结 前言 使用pandas进行数据分析的时候,我们经常需要对DataFrame的行或者列进行索引.使用pandas进行索引的方法主要有三种:直接使用行或者列标签.loc函数和iloc函数. 举个简单的例子: import numpy as np import pandas as pd df = pd.DataFrame({"Fruits":["apple","pear",&
-
python Pandas中数据的合并与分组聚合
目录 一.字符串离散化示例 二.数据合并 2.1 join 2.2 merge 三.数据的分组和聚合 四.索引 总结 一.字符串离散化示例 对于一组电影数据,我们希望统计电影分类情况,应该如何处理数据?(每一个电影都有很多个分类) 思路:首先构造一个全为0的数组,列名为分类,如果某一条数据中分类出现过,就让0变为1 代码: # coding=utf-8 import pandas as pd from matplotlib import pyplot as plt import numpy as
-
Python Pandas中缺失值NaN的判断,删除及替换
目录 前言 1. 检查缺失值NaN 2. Pandas中NaN的类型 3. NaN的删除 dropna() 3.1 删除所有值均缺失的行/列 3.2 删除至少包含一个缺失值的行/列 3.3 根据不缺少值的元素数量删除行/列 3.4 删除特定行/列中缺少值的列/行 4. 缺失值NaN的替换(填充) fillna() 4.1 用通用值统一替换 4.2 为每列替换不同的值 4.3 用每列的平均值,中位数,众数等替换 4.4 替换为上一个或下一个值 总结 前言 当使用pandas读取csv文件时,如果元
-
Python Pandas中合并数据的5个函数使用详解
目录 join 索引一致 索引不一致 merge concat 纵向拼接 横向拼接 append combine 前几天在一个群里面,看到一位朋友,说到自己的阿里面试,被问了一些关于pandas的使用.其中一个问题是:pandas中合并数据的5中方法. 今天借着这个机会,就为大家盘点一下pandas中合并数据的5个函数.但是对于每个函数,我这里不打算详细说明,具体用法大家可以参考pandas官当文档. join主要用于基于索引的横向合并拼接: merge主要用于基于指定列的横向合并拼接: con
-
Python Pandas 中的数据结构详解
目录 1.Series 1.1通过列表创建Series 1.2通过字典创建Series 2.DataFrame 3.索引对象 4.查看DataFrame的常用属性 前言: Pandas有三种数据结构:Series.DataFrame和Panel.Series类似于数组:DataFrame类似于表格:Panel可视为Excel的多表单Sheet 1.Series Series是一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据. 1.1通过列表创
-
Python Pandas中loc和iloc函数的基本用法示例
目录 1 loc和iloc的含义 2 用法 2.1 loc函数的用法 2.2 iloc函数的用法 补充:Pandas中loc和iloc函数实例 总结 1 loc和iloc的含义 loc表示location的意思:iloc中的loc意思相同,前面的i表示integer,所以它只接受整数作为参数. 2 用法 import pandas as pd import numpy as np # np.random.randn(5, 2)表示返回5x2的矩阵,index表示行的编号,columns表示列的编
随机推荐
- access中显示MSysObjects系统表的设置方法
- DEDECMS如何为文章添加HOT NEW标志图片
- C#设置本地网络如DNS、网关、子网掩码、IP等等
- PHP游戏编程25个脚本代码
- JSP 中request与response的用法详解
- 归并算法之有序数组合并算法实现
- 如何解决Linux系统下Docker占满分区的问题
- Android Studio升级到3.0 Terminal 中文显示异常解决
- 详解Vue 方法与事件处理器
- 解析ABP框架中的数据传输对象与应用服务
- Android自定义View基础开发之图片加载进度条
- input为disabled提交后得不到该值的解决方法
- 中国象棋js代码,仅演示,未能真下
- 为Python的Tornado框架配置使用Jinja2模板引擎的方法
- jQuery实现页面内锚点平滑跳转特效的方法总结
- Jquery iframe内部出滚动条
- Android编程绘制抛物线的方法示例
- 魔兽世界模拟器2.2的安装说明
- Android中关于屏幕的三个小众知识(宽屏适配、禁止截屏和保持屏幕常亮)
- Vim 编辑器操作汇总