对Pandas MultiIndex(多重索引)详解

创建多重索引

In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)

In [17]: df
Out[17]:
first  bar     baz     foo     qux \
second  one  two  one  two  one  two  one
A  0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299
B  0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127
C  -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 

first
second  two
A  -0.226169
B  -1.436737
C  -2.006747

获得索引信息

get_level_values

In [23]: index.get_level_values(0)
Out[23]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first')

In [24]: index.get_level_values('second')
Out[24]: Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second')

基本索引

In [25]: df['bar']
Out[25]:
second  one  two
A  0.895717 0.805244
B  0.410835 0.813850
C  -1.413681 1.607920

In [26]: df['bar', 'one']
Out[26]:
A 0.895717
B 0.410835
C -1.413681
Name: (bar, one), dtype: float64

In [27]: df['bar']['one']
Out[27]:
A 0.895717
B 0.410835
C -1.413681
Name: one, dtype: float64

使用reindex对齐数据

数据准备

In [11]: s = pd.Series(np.random.randn(8), index=arrays)

In [12]: s
Out[12]:
bar one -0.861849
  two -2.104569
baz one -0.494929
  two 1.071804
foo one 0.721555
  two -0.706771
qux one -1.039575
  two 0.271860
dtype: float64

s序列加(0~-2)索引的值,因为s[:-2]没有最后两个的索引,所以为NaN.s[::2]意思是步长为1.

In [34]: s + s[:-2]
Out[34]:
bar one -1.723698
  two -4.209138
baz one -0.989859
  two 2.143608
foo one 1.443110
  two -1.413542
qux one   NaN
  two   NaN
dtype: float64

In [35]: s + s[::2]
Out[35]:
bar one -1.723698
  two   NaN
baz one -0.989859
  two   NaN
foo one 1.443110
  two   NaN
qux one -2.079150
  two   NaN
dtype: float64

以上这篇对Pandas MultiIndex(多重索引)详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pandas重新生成索引的方法

    在数据处理的过程中,出现了这样的问题,筛选某些数据,出现索引从600多开始,但是我希望这行数据下标从0开始. 这个时候,我想到的是: df.reindex(range(length)) 但是查看一下数据之后,发现0-624之间的值全为Nan,显然不是我需要的数据. 最后找到了说明: pandas调用reindex方法后净会根据新索引进行重排,如果某个索引值当前不存在,就会引入 缺失值:可以通过fill_value参数填充默认值,也可以通过method参数设置填充方法: 感谢身边同事的帮助,找到了

  • pandas表连接 索引上的合并方法

    如下所示: left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value':range(6)}) right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b']) print(left1) print(right1) result = pd.merge(left1,right1,left_on='key',right_index=True) print(result) 层次化数

  • 删除python pandas.DataFrame 的多重index实例

    如下dataframe想要删除多层index top1000[:10] name sex births year prop year sex 1880 F 0 Mary F 7065 1880 0.077643 1 Anna F 2604 1880 0.028618 2 Emma F 2003 1880 0.022013 3 Elizabeth F 1939 1880 0.021309 4 Minnie F 1746 1880 0.019188 5 Margaret F 1578 1880 0.

  • 浅谈Pandas 排序之后索引的问题

    如下所示: In [1]: import pandas as pd ...: df=pd.DataFrame({"a":[1,2,3,4,5],"b":[5,4,3,2,1]}) In [2]: df Out[2]: a b 0 1 5 1 2 4 2 3 3 3 4 2 4 5 1 In [3]: df=df.sort_values(by="b") # 按照b列排序 In [4]: df Out[4]: a b 4 5 1 3 4 2 2 3

  • pandas 将索引值相加的方法

    如下所示: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) print s1 + s2 a 11 b 22 c 33 d 44 dtype: int64 s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20

  • 对pandas的层次索引与取值的新方法详解

    1.层次索引 1.1 定义 在某一个方向拥有多个(两个及两个以上)索引级别,就叫做层次索引. 通过层次化索引,pandas能够以较低维度形式处理高纬度的数据 通过层次化索引,可以按照层次统计数据 层次索引包括Series层次索引和DataFrame层次索引 1.2 Series的层次索引 import numpy as np import pandas as pd s1 = pd.Series(data=[99, 80, 76, 80, 99], index=[['2017', '2017',

  • Pandas GroupBy对象 索引与迭代方法

    如下所示: import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男', '女', '男', '男'], '成绩' : ['优秀', '优秀', '及格', '差', '及格', '及格', '优秀', '差'], '年龄' : [15,14,15,12,13,14,15,16]}) GroupBy=df.groupby("性别") GroupBy.iter() GroupBy对象是一个迭代对象,每次迭代

  • pandas带有重复索引操作方法

    有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题. 一.判断索引是否重复 a.Series索引重复判断 s = Series([1,2,3,4,5],index=["a","a","b","b","c"]) print(s.index.is_unique) #False Series.index.is_unique为False表示索引重复. b.DataFrame索引重复判断

  • Pandas 按索引合并数据集的方法

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.merge函数 left1 = DataFrame({'水果':['苹果','梨','草莓'], '价格':[3,4,5], '数量':[9,8,7]}).set_index('水果') right1 = DataFrame({'水果':['苹果','草莓'], '产地':['美国','中国']}) print(left1) pri

  • 对pandas里的loc并列条件索引的实例讲解

    如下所示: def Family_feature(df): df['Fam_Size'] =df['SibSp']+df['Parch'] df['Fam_Size'].loc[df['Fam_Size'] == 0] = 1 df['Fam_Size'].loc[(df['Fam_Size'] > 1) & (df['Fam_Size'] <= 3)] = 2 # df['Fam_Size'].loc[df['Fam_Size'] == 2] = 2 # df['Fam_Size']

随机推荐