python list转矩阵的实例讲解
如下所示:
<pre name="code" class="python">#list转矩阵,矩阵列合并 x = [[1.2,2.2,1.4],[1.3,2.4,2.1],[1,1,0]] #表示有三个点,第一个点为(1,2,1,3)类型为1 #将其转换为矩阵,每一行表示一个点的信息 m = np.array(x).T print m
以上这篇python list转矩阵的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
python矩阵转换为一维数组的实例
实例如下所示: >>>from compiler.ast import flatten >>>X matrix([[ 1, 17, 13, 221, 289, 169], [ 1, 17, 14, 238, 289, 196], [ 1, 17, 15, 255, 289, 225], [ 1, 18, 13, 234, 324, 169], [ 1, 18, 14, 252, 324, 196], [ 1, 18, 15, 270, 324, 225], [ 1, 1
-
python 列表,数组和矩阵sum的用法及区别介绍
1. 列表使用sum, 如下代码,对1维列表和二维列表,numpy.sum(a)都能将列表a中的所有元素求和并返回,a.sum()用法是非法的. 但是对于1维列表,sum(a)和numpy.sum(a)效果相同,对于二维列表,sum(a)会报错,用法非法. 2. 在数组和矩阵中使用sum: 对数组b和矩阵c,代码b.sum(),np.sum(b),c.sum(),np.sum(c)都能将b.c中的所有元素求和并返回单个数值. 但是对于二维数组b,代码b.sum(axis=0)指定对数组b对每列求
-
详解python中Numpy的属性与创建矩阵
ndarray.ndim:维度 ndarray.shape:形状 ndarray.size:元素个数 ndarray.dtype:元素数据类型 ndarray.itemsize:字节大小 创建数组: a = np.array([2,23,4]) # list 1d print(a) # [2 23 4] 指定数据类型: a = np.array([2,23,4],dtype=np.int) print(a.dtype) # int 64 dtype可以指定的类型有int32,float,floa
-
Python中矩阵创建和矩阵运算方法
矩阵创建 1.from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2.data2=mat(ones((2,4))) 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int 3.data5=mat(random.randint(2,8,size=(2,5)) 产生一个2-8之间的随机整数矩阵 4.data3=mat(random.rand(2,2)) 这里的random模块使用的是num
-
Python实现矩阵相乘的三种方法小结
问题描述 分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图. 解题方法 本文采用了以下方法进行求值:矩阵计算法.定义法.分治法和Strassen方法.这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,
-
Python 实现取矩阵的部分列,保存为一个新的矩阵方法
首先输入一个矩阵: >>> b=[[1,2,3,4,5,6],[2,2,3,4,5,6],[3,2,3,4,5,6],[4,2,3,4,5,6],[5,2,3,4,5,6]] >>> b=np.array(b) >>> b array([[1, 2, 3, 4, 5, 6], [2, 2, 3, 4, 5, 6], [3, 2, 3, 4, 5, 6], [4, 2, 3, 4, 5, 6], [5, 2, 3, 4, 5, 6]]) 目标:取上述矩阵
-
Python中的Numpy矩阵操作
Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.NumPy的主要目标,就是提供多维数组,从而实现矩阵操作. NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the sa
-
python for循环输入一个矩阵的实例
代码如下: a=[] for i in range(3): a.append([]) for j in range(3): a[i].append(int(input('输入整数:\n'))) print(a) 结果如下: 输入整数: 1 输入整数: 2 输入整数: 3 输入整数: 4 输入整数: 5 输入整数: 6 输入整数: 7 输入整数: 8 输入整数: 9 [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 以上这篇python for循环输入一个矩阵的实例就是小编分享给
-
python/sympy求解矩阵方程的方法
sympy版本:1.2 假设求解矩阵方程 AX=A+2X 其中 求解之前对矩阵方程化简为 (A−2E)X=A 令 B=(A−2E) 使用qtconsole输入下面程序进行求解 In [26]: from sympy import * In [27]: from sympy.abc import * In [28]: A=Matrix([[4,2,3],[1,1,0],[-1,2,3]]) In [29]: A Out[29]: Matrix([ [ 4, 2, 3], [ 1, 1, 0], [
-
python list转矩阵的实例讲解
如下所示: <pre name="code" class="python">#list转矩阵,矩阵列合并 x = [[1.2,2.2,1.4],[1.3,2.4,2.1],[1,1,0]] #表示有三个点,第一个点为(1,2,1,3)类型为1 #将其转换为矩阵,每一行表示一个点的信息 m = np.array(x).T print m 以上这篇python list转矩阵的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我
-
python 读取.csv文件数据到数组(矩阵)的实例讲解
利用numpy库 (缺点:有缺失值就无法读取) 读: import numpy my_matrix = numpy.loadtxt(open("1.csv","rb"),delimiter=",",skiprows=0) 写: numpy.savetxt('2.csv', my_matrix, delimiter = ',') 可能遇到的问题: SyntaxError: (unicode error) 'unicodeescape' codec
-
Python数据处理numpy.median的实例讲解
numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool
-
Python创建简单的神经网络实例讲解
在过去的几十年里,机器学习对世界产生了巨大的影响,而且它的普及程度似乎在不断增长.最近,越来越多的人已经熟悉了机器学习的子领域,如神经网络,这是由人类大脑启发的网络.在本文中,将介绍用于一个简单神经网络的 Python 代码,该神经网络对于一个 1x3 向量,分类第一个元素是否为 10. 步骤1: 导入 NumPy. Scikit-learn 和 Matplotlib import numpy as np from sklearn.preprocessing import MinMaxScale
-
python模块之time模块(实例讲解)
time 表示时间的三种形式 时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们运行"type(time.time())",返回的是float类型. 格式化的时间字符串(Format String): '1999-12-06' 时间格式化符号 ''' %y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24小时制小时数(0-2
-
python数据结构之链表的实例讲解
在程序中,经常需要将⼀组(通常是同为某个类型的)数据元素作为整体 管理和使⽤,需要创建这种元素组,⽤变量记录它们,传进传出函数等. ⼀组数据中包含的元素个数可能发⽣变化(可以增加或删除元素). 对于这种需求,最简单的解决⽅案便是将这样⼀组元素看成⼀个序列,⽤ 元素在序列⾥的位置和顺序,表示实际应⽤中的某种有意义的信息,或者 表示数据之间的某种关系. 这样的⼀组序列元素的组织形式,我们可以将其抽象为线性表.⼀个线性 表是某类元素的⼀个集合,还记录着元素之间的⼀种顺序关系.线性表是 最基本的数据结构
-
Python网络爬虫与信息提取(实例讲解)
课程体系结构: 1.Requests框架:自动爬取HTML页面与自动网络请求提交 2.robots.txt:网络爬虫排除标准 3.BeautifulSoup框架:解析HTML页面 4.Re框架:正则框架,提取页面关键信息 5.Scrapy框架:网络爬虫原理介绍,专业爬虫框架介绍 理念:The Website is the API ... Python语言常用的IDE工具 文本工具类IDE: IDLE.Notepad++.Sublime Text.Vim & Emacs.Atom.Komodo E
-
对Python 网络设备巡检脚本的实例讲解
1.基本信息 我公司之前采用的是人工巡检,但奈何有大量网络设备,往往巡检需要花掉一上午(还是手速快的话),浪费时间浪费生命. 这段时间正好在学 Python ,于是乎想(其)要(实)解(就)放(是)双(懒)手. 好了,脚本很长又比较挫,有耐心就看看吧. 需要巡检的设备如下: 设备清单 设备型号 防火墙 华为 E8000E H3C M9006 飞塔 FG3950B 交换机 华为 S9306 H3C S12508 Cisco N7K 路由器 华为 NE40E 负载 Radware RD5412 Ra
-
python去除扩展名的实例讲解
获取不带扩展名的文件的名称: import os printos.path.splitext("path_to_file")[0] from os.path import basename # now you can call it directly with basename print basename("/a/b/c.txt") >>>base=os.path.basename('/root/dir/sub/file.ext') >&g
-
python 限制函数调用次数的实例讲解
如下代码,限制某个函数在某个时间段的调用次数, 灵感来源:python装饰器-限制函数调用次数的方法(10s调用一次)欢迎访问 原博客中指定的是缓存,我这里换成限制访问次数,异曲同工 #newtest.py #!/usr/bin/env python #-*- coding:utf-8 -*- import time def stat_called_time(func): cache={} limit_times=[10] def _called_time(*args,**kwargs): ke
随机推荐
- AngularJS中run方法的巧妙运用
- 读jQuery之十 事件模块概述
- Hibernate5新特性介绍
- PHP实现下载断点续传的方法
- JS 在数组指定位置插入/删除数据的方法
- javascript Array 数组常用方法
- 如何让DIV可编辑、可拖动示例代码
- 关于php内存不够用的快速解决方法
- MySQL InnoDB和MyISAM数据引擎的差别分析
- 简单谈谈js的数据类型
- 收集整理的四个方向的滚动
- squid3缓存服务器编译安装和高命中率配置示例
- CentOS下MySQL安装详细步骤
- 分享三种Apache配置虚拟主机的方式
- Linux多线程编程(二)
- win+apache+php+mysql+phpmyadmin环境配置方法
- C#计算2个字符串的相似度
- PHP图片处理之使用imagecopyresampled函数裁剪图片例子
- C#实现的JS操作类实例
- 浅谈SpringBoot处理url中的参数的注解