C++变量判定的螺旋法则示例详解

前言

C++ 中一个标识符配合着各种修饰界定符,使得标识符的本意不那么直观一眼就能看出,甚至需要仔细分析,才能知道该标识符的具体你含义。

比如:

void (*signal(int, void (*fp)(int)))(int);

其中 signal 是什么?

螺旋法则

对于如何进行变量的辩识,有个非官方的 “顺时针/螺旋法则(Clockwise/Spiral Rule)” 可用来帮助辩识。

该法则的内容,简单来说,为了搞清楚一个未知标识符的含义,我们可以:

1、从我们需要判定的标识符开始,顺时针画圈,遇到如下符号时,用对应的语义替换:

  • [x] 或 [] => 容量为 x 的数组或数组
  • (type1,type2...) => 接收 type1、type2... 的函数,返回值为(待定)
  • * => 指向(类型待定)的指针

2、重复上面的步骤直到语句中所有符号都被遍历过。

3、始终优先解析括号括起来的部分。

实地演练

一个简单的示例

先从一个简单的开始,判定如下语句中 str 的含义:

+-------+
                     | +-+   |
                     | ^ |   |
                char *str[10];
                 ^   ^   |   |
                 |   +---+   |
                 +-----------+

根据螺旋法则,如上面线图标识所示,

  • 从 str 这个需要被判定的对象出发。
  • 螺旋路径上第一次遇到的是 [ 左方括号,由此我们知道,str 是一个尺寸为 10 的数组。
  • 继续旋转,遇到 *,所以 str 是一个尺寸为 10 的数组,数组元素为指针。
  • 继续,遇到 ; 标识语句的结束。
  • 再继续,遇到 char,所以 str 是一个尺寸为 10 的数组,数组元素为指向 char 类型的指针。

进阶

回到文章开头那个语句,来判定其中 signal 的含义。

+-----------------------------+
                      |                  +---+      |
                      |  +---+           |+-+|      |
                      |  ^   |           |^ ||      |
                void (*signal(int, void (*fp)(int)))(int);
                 ^    ^      |      ^    ^  ||      |
                 |    +------+      |    +--+|      |
                 |                  +--------+      |
                 +----------------------------------+

由螺旋法则画出如上的线图,进而可分析:

从要判定的 signal 出发首次遇到 ( 左括号,表示 signal 是一个函数,入参为 int 和 ...

此处需要需要进一步运用螺旋法则先确定 fp 的含义,才能进而确认 signal 这个函数的完整入参。所以从 fp 了发进行一次子螺旋。

因为需要优先解析括号括起来的部分,所以转一圈回来首次遇到的是 *,由此 fp 是一个指针。

继续解析 fp,遇到 (,所以 fp 是一个指向函数的指针,这个函数接收一个 int 类型的入参。

继续下去,遇到 void,所以 fp 是一个指向函数的指针,这个函数接收一个 int 类型的入参并且返回值为空。

至此完成了 fp 的解析,可以知道 signal 的类型为:

  • 是一个函数,入参为:

    • 一个 int 类型
    • 一个指向函数的指针,这个函数接收一个 int 类型的入参并且返回值为空

路径跑到 signal 的螺旋中,遇到 *(紧邻 signal 左边),所以 signal 是

  • 一个函数,入参为:

    • 一个 int 类型
    • 一个指向函数的指针,这个函数接收一个 int 类型的入参并且返回值为空
  • 返回值为指针

再继续,遇到 (,接上面,返回值为指向另一函数的指针,被指向的这个函数接收一个 int 入参。

最后,遇到 void,signal 返回值指向的这个函数的返回值为空。

最后捋一下 signal 的完整类型为:接收一个 int,一个指向接收一个 int 并且返回值为空的函数的指针,这两个参数的函数,并且返回值为指向一个接收 int 型返回为空的函数...Orz。

成员函数的判定

螺旋施法没有给出在 const 参与的情况下的判定,不过因为 const 默认修饰紧邻其左边的元素,如果右边无元素,则修饰左边的元素。因此只需要将 const 和它修饰的元素作为整体来看,就还是可以使用螺旋法则的。

考察如下语句:

const int*const Method3(const int*const&) const;

当函数后面紧跟一个 const 时,表示该成员函数的作用域内 *this 是常量,即无法在该函数体内对所类的实体进行修改。

下面对上面的语句进行分析:

  • 从 Method3 出发,遇到 (,所以 Method3 是一个函数,接收一个引用作为入参 const int*const& 部分。
  • 该引用的类型是 const int*const,指向整形常量的常量指针。
  • 继续遇到 *const,所以函数的返回值为常量指针。指针指向的类型为 const int 整形常量。
  • 函数末尾的 const 如前所述,标识函数体内不修改实例。

相关资源

总结

以上就是我在处理客户端真实IP的方法,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • C++中指向结构体变量的指针

    定义: 结构体变量的指针就是该变来那个所占据的内存段的起始地址.可以设一个指针变量,来指向一个结构体变量,此时该指针变量的值是结构体变量的起始地址. 设p是指向结构体变量的数组,则可以通过以下的方式,调用指向的那个结构体中的成员: (1)结构体变量.成员名.如,stu.num. (2)(*p).成员名.如,(*p).num. (3)p->成员名.如,p->num. 复制代码 代码如下: #include<iostream>#include<string>using na

  • C++实现:螺旋矩阵的实例代码

    通过观察发现矩阵的下标有这样一个规律:a行递增后b列递增然后c行递减再d列递减,但是对应值却是逐渐增加的.因此可用4个循环实现,需要注意的是在赋值时不要把之前的值覆盖了.所以在这里选择相同顔色部分赋值,代码如下: 复制代码 代码如下: #include <iostream>#include <iomanip> using namespace std; // 输出螺旋矩阵void Matrix(){    const int size = 10; // 矩阵大小    int mat

  • C++中的extern声明变量详解

    extern声明变量无外乎如下两种: 1.声明全局变量 2.声明函数 今天我们只谈extern,什么const.static之类等等与之相关或不相关的一律忽略,下面就分别对以上两种情况一一讲解 声明和定义 既然提到extern声明变量,那我们就必须搞清楚声明和定义的区别. 这里我们将普通数据变量和函数统称变量.从内存分配角度来说,声明和定义的区别在于声明一个变量不会分配内存,而定义一个变量会分配内存.一个变量可以被声明多次,但是只能被定义一次. 基于以上前提,我们可以把声明和定义类比为指针和内存

  • 详解C++中的指针结构体数组以及指向结构体变量的指针

    C++结构体数组 一个结构体变量中可以存放一组数据(如一个学生的学号.姓名.成绩等数据).如果有10个学生的数据需要参加运算,显然应该用数组,这就是结构体数组.结构体数组与以前介绍过的数值型数组的不同之处在于:每个数组元素都是一个结构体类型的数据,它们都分别包括各个成员项. 定义结构体数组和定义结构体变量的方法相仿,定义结构体数组时只需声明其为数组即可.如: struct Student //声明结构体类型Student { int num; char name[20]; char sex; i

  • 关于C++静态成员函数访问非静态成员变量的问题

    复制代码 代码如下: class a{public:  static FunctionA()  {     menber = 1;  } private:  int menber;} 编译上述代码,出错.原因很简单大家都知道,静态成员函数不能访问非静态成员,这是因为静态函数属于类而不是属于整个对象,静态函数中的 member可能都没有分配内存.静态成员函数没有隐含的this自变量.所以,它就无法访问自己类的非静态成员. 那要想访问怎么办呢?地球人都知道只要将: 复制代码 代码如下: int me

  • C++的static关键字及变量存储位置总结

    今天看博文时,看到了c++的static关键字的一些总结,还涉及到了一些代码的存储位置,为了有时间的时候能够看一下,还是自己把它给摘抄下来吧. C++的static有两种用法:面向过程程序设计中的static和面向对象程序设计中的static.前者应用于普通变量和函数,不涉及类:后者主要说明static在类中的作用. 一.面向过程设计中的static 1.静态全局变量 在全局变量前,加上关键字static,该变量就被定义成为一个静态全局变量.我们先举一个静态全局变量的例子,如下: 复制代码 代码

  • C++用指针变量作为函数的参数接受数组的值的问题详细总结

    实参和形参的四种结合方式 实参 形参 实例 数组名 数组名 1.1 数组名 指针变量 1.2 指针变量 数组名 1.3 指针变量 指针变量 1.4 本文以输入10个整数,然后对其进行排序,然后输出的程序为例: 形参为数组名,实参是数组名 实例代码1.1: 复制代码 代码如下: #include<iostream>using namespace std;int main(){ void Sort(int a[],int n); int a[10],i; cout<<"Ple

  • 基于C++全局变量的声明与定义的详解

    (1)编译单元(模块)在VC或VS上编写完代码,点击编译按钮准备生成exe文件时,编译器做了两步工作:第一步,将每个.cpp(.c)和相应的.h文件编译成obj文件:第二步,将工程中所有的obj文件进行LINK,生成最终.exe文件.那么,错误可能在两个地方产生:一个,编译时的错误,这个主要是语法错误:一个,链接时的错误,主要是重复定义变量等.编译单元指在编译阶段生成的每个obj文件.一个obj文件就是一个编译单元.一个.cpp(.c)和它相应的.h文件共同组成了一个编译单元.一个工程由很多编译

  • C++中结构体的类型定义和初始化以及变量引用

    C++结构体类型的定义和初始化 有时需要将不同类型的数据组合成一个有机的整体,以供用户方便地使用.这些组合在一个整体中的数据是互相联系的.例如,一个学生的学号.姓名.性别.年龄.成绩.家庭地址等项,都是这个学生的属性,见图 可以看到学号(num).姓名(name).性别(sex).年龄(age).成绩(score ).地址(addr)是与姓名为"Li Fun"的学生有关的.如果在程序中将num,name,sex,age,score,addr分别定义为互相独立的变量,就难以反映出它们之间

  • c++作用域运算符用法(全局变量和局部变量)

    通常情况下,如果有两个同名变量,一个是全局变量,另一个是局部变量,那么局部变量在其作用域内具有较高的优先权,它将屏蔽全局变量. 作用域运算符 复制代码 代码如下: #include<iostream>using namespace std;int num=10;int main(){   int num;    num=25;    cout<<"num is "<<num<<endl;    return 0;} 程序的输出结果是num

随机推荐